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Abstract

This thesis deals with the problem of image fusion, with application to night vi-
sion systems for the car industry. Roughly speaking, an image fusion procedure
intends to produce a single image from a set of images having different charac-
teristics and providing complementary information. Because of the application,
this work mainly focuses on multisensor image fusion, and most of the experi-
mental results are provided on near and far infrared data. The main purpose
of this thesis is to explore the relevancy of using wavelet-based algorithms for
performing an image fusion task. In the first chapter, we deal with the registra-
tion problem, which is, most of the time, a required preprocessing task. In the
second chapter, we briefly introduce the wavelet theory. The third and fourth
chapters are then devoted to image fusion: the third chapter deals with the use
of orthogonal wavelet decompositions for performing the fusion task and presents
some experimental results, while the fourth one studies, on a theoretical point of
view, the feasibility of a feature-based image fusion procedure using the wavelet
maxima representation.
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Cette page n’est plus blanche puisque ce texte y figure !



“I can remember when there wasn’t an automobile in the world with brains
enough to find its own way home. I chauffeured dead lumps of machines that
needed a man’s hand at their control every minutes. Every year machines like
that used to kill tens of thousands of people.
The automatics fixed that. A positronic brain can react much faster than a human
one, of course, and it paid people to keep hands off the controls. You got in,
punched your destination and let it go its own way.”

Isaac Asimov [1].
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Introduction

This thesis deals with the problem of image fusion, with application to night
vision systems for the car industry. Roughly speaking, an image fusion algorithm
intends to produce a single image from a set of images having different characte-
ristics and providing complementary information. Because of the application, this
work concentrates mainly on multisensor image fusion, i.e. the images involved
in the fusion process are coming from sensors observing at different wavelengths.
Experimental tests are performed using a sequence of corresponding near-infrared
(NIR: 0.8 to 1.2µm) and far-infrared (FIR: 8 to 12µm) images taken at night.
These data have been provided to the AMAC group by PSA Peugeot/Citroën
and Jaguar Cars Ltd. Since a NIR camera observes at wavelengths which are just
outside the visible part of the spectrum, the corresponding images are roughly
equivalent to visible ones. The interest of using a thermal (FIR) sensor comes
from the following reasons: it is a passive sensor, i.e. it does not rely on an
external stimulation (like, for example, the headlights), moreover, particular ob-
jects, such as pedestrians, can be easily seen on a cooler background. However,
a thermal image has an unnatural appearance and cannot be easily understood
by an inexperimenced humain brain ; besides, a FIR sensor is highly sensitive to
weather conditions. This implies that a FIR image complements a NIR one, but
a whole night vision system cannot rely only on it. Because a human operator
is not able to fully and fastly integrate data coming from different sources, the
purpose of image fusion is to use a computer in order to perform this integration:
image fusion is therefore a man/machine interface problem.

In order to design a fusion procedure, one has to define formally the notion
of relevant information: this is a necessary condition for having a quantitative
measure which allows to perform the fusion on a computer. Moreover, one should
find a fusion operator, acting on some decompositions of the source images, which
behaves correctly according to the measure of relevancy and does not introduce
any artifacts. As pointed in the image processing litterature, sharp variations are
very important features for image analysis, this is illustrated by the fact that a
human operator is able to recognize an object from only a rough sketch of its con-
tours. Therefore, our goal is to find a fusion operator which preserves as best as
possible the objects which have sharp frontiers with the rest of the image. There
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are two main scenari: first, an object is present in one of the two images and not
in the other, in that case we want this object to be present without degradation
in the fused image ; second, an object is present in the two images, in that case
we want the most relevant one (the one which has the sharpest frontier) to be
selected and present in the resulting image. As we will see in this thesis, an area-
based maximum selection (non-linear) operator applied on the orthogonal wavelet
decompositions of the images is a good candidate for fulfilling these requirements.

Obviously, the images, coming from two different sensors, have geometrical dif-
ferences which do not allow to fuse them directly. Moreover, our data exhibit
a strong non-linear distortion which must be taken into account explicitly. The
purpose of the first chapter is therefore to deal with this registration problem: we
first describe a complete non-linear camera model, then adapt it to our registra-
tion problem, and derive least square estimates for its parameters. Experimental
results are then given. The second chapter gives an overview of the wavelet the-
ory, since this mathematical tool is extensively used in the remaining part of
this thesis. The main subjects are: the continuous wavelet transform, the dyadic
wavelet transform and decompositions of functions onto orthogonal wavelet basis.
In the last two cases, fast algorithms are presented. This chapter intends to pro-
vide an introduction for a reader who is not familiar to wavelet analysis. A more
sophisticated reader can probably skip it and refer to it from time to time. The
third chapter deals with the image fusion problem and presents some solutions
based on orthogonal wavelet decompositions. We first gives a short litterature
survey and discuss the multifocus and multisensor problems, we then focus on the
one dimensionnal case and gives some theoretical arguments in favour of a win-
dowed maximum selection as a fusion operator. These results are then extended
in two dimensions and experimental results are presented and analysed. Finally,
the problem of noise is studied. The goal of the last chapter is to give some
perspectives: we study the feasability of designing a feature-based image fusion
procedure using the wavelet maxima representation and discuss the advantages
of doing so. The main point is that it allows to see the problem differently and
provides a strong theoretical background in which the fusion operation can be
performed. However, more research is necessary. Finally, the appendices con-
tain additionnal details to the first chapter, a discussion about the design of an
automatic registration procedure and a short mathematical complement.

Renaud Sirdey 12
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Chapter 1

Image registration in presence of

non-linear distortion

Introduction

Due to some differences (e.g. position, internal parameters, quality, . . . ) between
the two cameras, a same pixel in the two images does not correspond to the
same physical object. Obviously, this problem should be corrected if we want
to perform an efficient image fusion. The litterature is relatively abundant on
this subject (e.g. [Flusser94, Hsieh97, Ventura90, Zheng93]): this is a required
preprocessing step for some remote sensing tasks (e.g. satellite imaging) or stere-
ovision. However, they often assume that the transformation that maps a pixel
in one image to another is linear, i.e. a combination of the three basic operations:
rotation, translation and scaling. Morever, they do not take into account that the
images can have different physical origins (e.g. most of the time the two cameras
of a stereovision system are identical and observe at the same wavelength). The
multisensor case has already been studied in [Li95a, Li96a, Li96b], in which some
automatic feature-based procedures are presented. However, they focus more on
correcting the feature inconsistencies (due to the different grey-scale characteris-
tics of the two images) than on modelising the (potential) non-linear distortion.
The fact that our data does not allow us to neglect the lens distortion (see fi-
gure 1.5, for example) has motivated us to have a look at the field of camera
calibration, in which they use camera models which explicitly take into account
this type of distortion, see (notably) [Shih95].
The model described here has been used and presented in [Prescott97, Weng92,
Sid-Ahmed90] (the main reference is [Weng92]). The chapter is organized as
follows: we first present a common linear camera model, then introduce the mat-
hematical modelisation of the lens distortion and discuss the assumptions under
which it is usable for solving our registration problem (e.g. only one of the two
cameras should exhibit some distortion). We then focus on estimating the model
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parameters using a set of control points extracted “by eye” (this is done via a
classical mean square/maximum likelihood approach) and present some experi-
mental results.

1.1 A simple (distortion-free) camera model

Let us consider a point M = (x, y, z) in the world coordinate system and its
coordinates (x′, y′, z′) in the camera-centered coordinate system. The origin of
the camera system is supposed to coincide with the optical center of the camera,
its z′-axis coincide with the optical axis and the images plane is supposed to be
parallel to the plane (x′-axis, y′-axis) and situated at a distance f (focal distance)
of the origin. The relationship between the world coordinates and the camera
coordinates is given by






x′

y′

z′




 =






α11 α12 α13
α21 α22 α23
α31 α32 α33











x
y
z




+






τx
τy
τz




 (1.1)

where (αij) is a rotation matrix defined by the camera orientation. An applica-
tion of the well-known Thalès theorem gives the corresponding two-dimensional
coordinates in the image plane

u = f
x′

z′
, v = f

y′

z′
(1.2)

1.2 Mathematical model of the lens distortion

Due to several types of imperfections in the manufacturing of lenses, equation
(1.2) does not hold and must be replaced by an equation which explicitly takes
into account the non-linear positionnal error

u′ = u+ νu(u, v), v
′ = v + νv(u, v)

where u and v are the (unknown) distortion-free coordinates given by equation
(1.2) and u′ and v′ the corresponding distorted coordinates. This section is a
summary of the beginning of [Weng92]. We introduce three types of distortions:
the radial, decentering and thin-prism distortions. The complete model is a
combination of the three.

1.2.1 Radial distortion

The radial distortion is responsible for an inward or outward displacement of a
given point from its ideal location. It is mainly due to some flaws in the lens

Renaud Sirdey 14



1.2 Mathematical model of the lens distortion 1997/98

(radial) curvature. The radial distortion of a perfectly centered lens is governed
by the following equation [Weng92]

ν(r)ρ (ρ) =
∞∑

i=1

κiρ
2i+1

where ρ is the radial distance from the principal point of the camera and the {κi}
are the distortion coefficients. For each point in the image plane denoted by its
polar coordinates (ρ, φ), the radial distortion corresponds to the distortion along
the radial direction. Recalling that u = ρ cosφ and v = ρ sinφ leads to

ν(r)u (u, v) = cosφν(r)ρ (ρ)

= cosφρ
∞∑

i=1

κiρ
2i

= u
∞∑

i=1

κiρ
2i

= κ1u(u
2 + v2) +O[(u, v)5]

the same mechanism gives ν(r)v (u, v) = κ1v(u
2+v2)+O[(u, v)5]. See also figure 1.1.

Figure 1.1 Radial distortion.
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(a) κ = 0.1.
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(b) κ = −0.1.

1.2.2 Decentering distortion

The decentering distortion appears because (in general) the optical centers of the
different lens elements are not strictly colinear. The decentring distortion has
a radial and a tangential component which are governed (respectively) by the

15 Renaud Sirdey
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following equations [Weng92]

ν(d)ρ = 3 sin(φ− φ0)
∞∑

i=1

λiρ
2i

and

ν(d)τ = cos(φ− φ0)
∞∑

i=1

λiρ
2i

where φ0 denotes the angle between the u-axis and the line of maximum tangential
distortion. The resulting distortions along the u-axis and the v-axis are given by

(

ν(d)u (u, v)
ν(d)v (u, v)

)

=

(

cosφ − sin φ
sinφ cos φ

)(

ν(d)ρ

ν(d)τ

)

Therefore,

ν(d)u (u, v) = (3 cosφ sin(φ− φ0)− sinφ cos(φ− φ0))
∞∑

i=1

λiρ
2i

=
1

ρ2
(3uv cosφ0 − 3u2 sin φ0 − uv cosφ0 − v2 sin φ0)

∞∑

i=1

λiρ
2i

= (2uv cosφ0 − (3u2 + v2) sinφ0)
∞∑

i=1

λiρ
2i−2

= µ1(3u
2 + v2) + 2µ2uv +O[(u, v)4]

by letting µ1 = −λ1 sin φ0 and µ2 = λ2 cosφ0. The same kind of arguments give

ν(d)v (u, v) = µ2(u
2 + 3v2) + 2µ1uv +O[(u, v)4]

Figure 1.2 (a) illustrates the decentering distortion for ξ1 = 0.02 and ξ2 = 0.03.

1.2.3 Thin-prism distortion

The thin-prism distortion arises from imperfections in lens design and manufac-
ture and is modeled by the adjunction of a thin prism to the optical system
[Weng92]. The thin-prism distortion obeys the following equations

ν(d)ρ = sin(φ− φ1)
∞∑

i=1

λiρ
2i

and

ν(d)τ = cos(φ− φ1)
∞∑

i=1

λiρ
2i

φ1 is defined as φ0 for the decentering distortion. By using similar techniques as
before we end up with

ν(t)u (u, v) = ξ1(u
2 + v2) +O[(u, v)4]
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and

ν(t)v (u, v) = ξ2(u
2 + v2) +O[(u, v)4]

Figure 1.2 (b) illustrates the thin-prism distortion for µ1 = 0.01 and µ2 = 0.01.

Figure 1.2 Decentering and thin-prism distortion.
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(a) Decentering distortion.
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(b) Thin-prism distortion.

1.2.4 Complete model

Taking into account the three previous types of distortion, neglecting the terms
in O[(u, v)p], p ≥ 4 and letting ̺1 = ξ1 + µ1, ̺2 = ξ2 + µ2, ̺3 = 2µ1, ̺4 = 2µ2
lead to

νu(u, v) ≈ (̺1 + ̺3)u
2 + ̺4uv + ̺1v

2 + κ1u(u
2 + v2)

and

νv(u, v) ≈ ̺2u
2 + ̺3uv + (̺2 + ̺4)v

2 + κ1v(u
2 + v2)

which is a five-parameters (approximate) model.

1.3 Assumptions

This section presents the assumptions under which the previous camera model
can be used for solving our image registration problem.

1.3.1 Positions of the cameras

The first assumption concerns the positions of the two camera and can be stated
as: the optical axis of the two cameras are parallel, the u-axis, v-axis (NIR) and
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the ũ-axis, ṽ-axis (FIR) are (respectively) parallel and coplanar. Under these
assumptions equation (1.1) becomes






x′

y′

z′




 =






x
y
z




+






τx
τy
0




 ,






x̃′

ỹ′

z̃′




 =






x
y
z




+






τ̃x
τ̃y
0






1.3.2 Imaged objects

The second assumption deals with the distance of the imaged objects from a cam-
era. It consists in assuming that the imaged objects are situated at a (roughly)
constant z coordinate from the optical center of each camera. This allows to
rewrite equation (1.2) as

u = f
x′

cte
= f

x− τx
cte

, v = f
y′

cte
= f

y − τy
cte

for the NIR camera, and

ũ = f̃
x̃′

cte
= f̃

x− τ̃x
cte

, ṽ = f̃
ỹ′

cte
= f̃

y − τ̃y
cte

for the FIR one. These last equations implies a linear relationship between the
(ideal) coordinates in the NIR image and the (ideal) coordinates in the FIR one:

ũ = αu+ βu, ṽ = αv + βv

where α = f̃
f
, βu =

τ̃x−τx
cte

, and βv =
τ̃y−τy

cte
.

1.3.3 Distortion of the NIR camera

The last assumption consists in considering that the NIR camera has a neglectable
lens distortion. This leads to the following (complete) model

ũ′ = ũ+ νũ(ũ, ṽ)

= αu+ βu + νũ(αu+ βu, αv + βv) (1.3)

Obviously, we also have

ṽ′ = αv + βv + νṽ(αu+ βu, αv + βv) (1.4)

Expanding (respectively) equation (1.3) and (1.4) leads to

ũ′ = fu(u, v) = α1u
3 + α2uv

2 + α3u
2 + α4v

2 + α5uv + α6u+ α7v + α8 (1.5)

and

ṽ′ = fv(u, v) = α′1v
3 + α′2vu

2 + α′3u
2 + α′4v

2 + α′5uv + α′6u+ α′7v + α′8 (1.6)

There exists complicated and highly non-linear relationships between the {αi}
and the {α′i}. These relationships are ignored and we assume that knowing
the parametric form of the model should be sufficient. In the next sections the
parameters of fu and fv are considered as if they were independant.
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1.4 Quadratic model

1.4.1 Model

By neglecting the term of order higher than 3 in equations (1.3) and (1.4) (res-
pectively u3, uv2 and v3, vu2), one ends up with two quadratic polynomials of
the form

fu(u, v) =< ~z,A~z > + <~b, ~z > +c, fv(u, v) =< ~z,A′~z > + <~b′, ~z > +c′

where ~z = (u v)T , A ∈ M2×2(R) (symetric), ~b ∈ R2 and c ∈ R (same for A′, ~b′

and c′).
Neglecting these terms means that we do not considerer the radial distortion
discussed in the previous section. However, as the decentering and the thin-
prism distortion also introduce some distortion in the radial direction the model
should be able to give reasonable results.

1.4.2 LS/ML estimates of the parameters

Now, given two sets of corresponding control points, {ui, vi} and {ũ′i, ṽ′i}, our goal
is to find A⋆, ~b⋆, c⋆, A

′⋆, ~b
′⋆, c

′⋆ such that

Σu(A
⋆,~b⋆, c⋆) ≤ Σ(A,~b, c) ∀A,~b, c, Σu(A,~b, c) =

N∑

i=1

(fu(ui, vi)− ũ′i)
2

and

Σv(A
′⋆,~b

′⋆, c
′⋆) ≤ Σ(A′,~b′, c′) ∀A′,~b′, c′, Σv(A′,~b′, c′) =

N∑

i=1

(fv(ui, vi)− ṽ′i)
2

The resulting values are the least square estimates and the maximum likelihood
estimates1 of the model parameters.
Now, A⋆, ~b⋆ and c⋆ are the solutions of the following equation

(

∂Σu
∂a11

∂Σu
∂a22

∂Σu
∂a12

∂Σu
∂b1

∂Σu
∂b2

∂Σu
∂c

)

= ~0

which leads to a linear system of the form

Q~x = ~θ (1.7)

where ~x = (a11 a22 a12 b1 b2 c)
T . Finding A

′⋆, ~b
′⋆, c

′⋆ (for fv(u, v)) gives the same

system except that the right hand side becomes ~θ′ (Q, ~θ and ~θ′ are given in §A.1).
Both systems are solved via the Gauss-Siedel method. Some experimental results
are available in §1.6.1.

1If we assume that the {ũ′i} are corrupted by a gaussian noise of mathematical expectation
0 and variance σ2 then the log-likehood is equal to −n

2 log 2πσ2 − 1
2σ2

∑

i(fu(ui, vi) − ũ′i)
2.

Therefore, under this statistical model, maximizing the likelihood is equivalent to minimize
Σu. Obviously, the same reasoning holds for Σv.
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1.5 Third order model

1.5.1 Model

The third order model arises from the fact that we do not neglect the terms of
high order in equations (1.5) and (1.6). This leads to

fu(u, v) = d1u
3 + d2uv

2+ < ~z,A~z > + <~b, ~z > +c

and

fv(u, v) = d′1v
3 + d′2vu

2+ < ~z,A′~z > + <~b′, ~z > +c′

1.5.2 LS/ML estimates of the parameters

For estimating the model parameters via the least square method (as in the
previous section), we need to solve the two following linear systems

M~x = ~ϑ (1.8)

where ~x = (d1 d2 a11 a22 a12 b1 b2 c)
T , and

M ′~x′ = ~ϑ′ (1.9)

where ~x = (d′1 d
′
2 a

′
11 a

′
22 a

′
12 b

′
1 b

′
2 c

′)T . Note that the bottom right part of both

M and M ′ is equal to Q and that the bottom part of ~ϑ and ~ϑ′ are respectively
equal to ~θ and ~θ′ (Q, ~θ and ~θ′ are defined in the previous section). M , M ′, ~ϑ and
~ϑ′ are given in §A.2.
Once again, the two systems are solved using the Gauss-Siedel method. The next
section presents some experimental results.

1.6 Experimental results

The estimations presented in this section have been computed using a set of 68
control points extracted by hand. The two sets are uniformly distributed within
the image and simulate (as best as the sequence allows it) a calibration grid. This
allows to “control” the ill-conditionned nature of the systems.

1.6.1 Quadratic model

The estimated values of the parameters are (see §A.1)

ã11 = −.0063, ã22 = .0356, ã12 = .0035, b̃1 = .7851, b̃2 = .0011, c̃ = −.0251
(1.10)
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for f̃u and

ã′11 = −.2041, ã′22 = −.1860, ã′12 = .0160, b̃′1 = −.0141, b̃′2 = .6583, c̃′ = .0869
(1.11)

for f̃v. The mean square error2 is equal to .0122 for f̃u and .0126 for f̃v. The
resulting (estimated) model is shown on figure 1.3.

Figure 1.3 Estimated quadratic model.
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1.6.2 Third order model

The estimated values of the parameters are (see page 103)

d̃1 = −.1485, d̃2 = −.0257, ã11 = −.0057, ã22 = .0352,

ã12 = .0033, b̃1 = .8085, b̃2 = .0014, c̃ = −.0251 (1.12)

for f̃u and (see page 103, as well)

d̃′1 = −.0669, d̃′2 = −.0510, ã′11 = −.2047, ã′22 = −.1848,
ã′12 = .0160, b̃′1 = −.0143, b̃′2 = .6715, c̃′ = .0869

(1.13)

for f̃v, with respective mean square errors equal to .0119 and .0125. The resulting
(estimated) model is shown on figure 1.4.

1.7 Image registration

Both on a mean square error and on a “visual” criterion point of view, the two
models give roughly equivalent results and lead to reasonable registered images
(figure 1.5 shows some examples). As simplicity is a reasonable criteria (for
equivalent performances) the quadratic model is the one chosen.

2
√

1
n

∑

i(f̃u(ui, vi)− ũ′i)
2 where f̃u(u, v) denotes the estimation of fu(u, v).
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Figure 1.4 Estimated third-order model.
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Using the quadratic model, the registration procedure becomes straightforward:
for a pixel (u v)T is the registered image we have to take the corresponding pixel
(f̃u(u, v) f̃v(u, v))

T in the raw image. Since (f̃u(u, v) f̃v(u, v))
T is not (in general)

an integer-valued vector, a bilinear interpolation scheme is used for computing
the value at (u v)T . Obviously, this interpolation has no physical meaning.
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Figure 1.5 Example of registered image.

(a) Original NIR. (b) Original FIR.

(c) Quadratic model. (d) Third-order model.
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Chapter 2

A partial overview of the wavelet

theory

Introduction

The last decade has seen the development of a new type of signal representa-
tions, known as the wavelet transforms (named after the well-known article of
Alex Grossmann and Jean Morlet [Grossmann84]). As in the Fourier analysis, the
wavelet transform consists in decomposing a given function onto a set of “build-
ing blocks”. However, as opposed to the Fourier transformation (in which the
“building blocks” are the well-known complex exponentials), the wavelet trans-
form uses the dilated and translated version of a “mother wavelet” which has
convenient properties according to time/frequency localization. As we will see
later, this allows to perform a time/frequency analysis of signals which is much
more relevant than those provided by other decompositions, e.g. the windowed
Fourier transform. In the last few years, the wavelet analysis has been applied
successfully to a wide range of problems from pure mathematics to engineering
(characterization of some functionnal spaces, study of turbulence, signal process-
ing, . . . ).
This chapter intends to provide a short introduction to the wavelet theory. The
subjects which are adressed are (in chronological order): the continuous wavelet
transform, the dyadic wavelet transform, the notions of multiresolution analysis
and orthogonal multiresolution analysis (in which orthogonal and non-redundant
decompositions arise). Fast algorithms are presented for the dyadic and the or-
thogonal wavelet transforms. Obviously, this chapter does not pretend to be
exhaustive, we have only included the necessary material for understanding the
rest of this thesis, so that a reader which is not familiar to wavelets can read it
without having to study other references simultaneously.
This chapter has been written using principaly [Jawerth93, Daubechies92] and
the recent book by Stéphane Mallat: “A Wavelet Tour of Signal Processing”
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[Mallat98], which is very complete (not only on a wavelet point of view). Some
other “specialized” articles have been used as well.

2.1 Preliminaries

Definition 1 (L2(R)) L2(R) denotes the space of square integrable functions,
i.e.

L2(R) =
{

f/
∫ +∞

−∞
|f(x)|2dx <∞

}

provided the scalar product

< f, g >=
∫ +∞

−∞
f(x)g∗(x)dx

and the associated norm
‖f‖2 =< f, f >

This space (in association with this scalar product) has a Hilbert space structure
(see definition 9, page 123).

Definition 2 (Fourier transform) The Fourier transform1 of a function f ∈
L2(R) is defined as

f̂(ξ) =
∫ +∞

−∞
f(x)e−iξxdx

and its inverse is given by

f(x) =
1

2π

∫ +∞

−∞
f̂(ξ)eiξxdξ

Many of the results presented in the next sections are dependant on this definition.

Theorem 1 (Poisson sommation formula) For all f, g ∈ L2(R), the Pois-
son sommation formula gives the two equalities

+∞∑

l=−∞
f(x− l) =

+∞∑

k=−∞
f̂(2kπ)e2iπkx (2.1)

and
+∞∑

l=−∞
< f, τlg > e−iξl =

+∞∑

k=−∞
f̂(ξ + 2kπ)ĝ∗(ξ + 2kπ) (2.2)

A proof of this result can be found in [Duong97].

1In general [Weisstein98], a Fourier transform pair can be defined using two arbitrary con-

stants A and B such that f̂(ξ) = A
∫ +∞
−∞ f(x)eBiξxdx and f(x) = B

2πA

∫ +∞
−∞ f̂(ξ)e−Biξxdξ.
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2.2 The continuous wavelet transform

This section presents the continuous wavelet transform and dicusses its basic
properties, e.g. time/frequency localization, inversion, redundancy, . . . The con-
nections between the continuous transform and other “discrete” wavelet trans-
forms (dyadic or orthogonal wavelet transforms) will be emphasized in the next
sections.

2.2.1 Definition and properties

Definition 3 (Continuous wavelet transform) The continuous wavelet trans-
form of f ∈ L2(R) is defined as [Grossmann84, Mallat98, Starck92]

Wf (a, b) =< f, ψa;b >, ψa;b(x) =
1√
a
ψ

(

x− b

a

)

(2.3)

where a > 02 and b are respectively the scale and the translation parameter.

ψ ∈ L2(R) is called a wavelet function. This transformation is linear and invariant
according to shift and scale. A direct consequence of the Parseval theorem3 is

Wf (a, b) =
1

2π
< f̂ , ψ̂a;b >, ψ̂a;b(ξ) =

√
ae−iξbψ̂(aξ) (2.4)

Equations (2.3) and (2.4) imply that the wavelet coefficients contain some in-
formation about f coming from both the time and the frequency domains. The
wavelet transform is therefore a time/frequency representation as the windowed
Fourier transform introduced by Gabor [Gabor46, Feichtinger97], or the Wigner-
Ville distribution [Ville48, Hlawatsch92, Mallat98].
Unfortunately, this type of representations is subject to a limitation due to the
Weyl-Heisenberg undeterminacy relation4 (this is not directly true for the Wigner-
Ville distribution but its practical use involves an averaging which leads to a
loss of time-frequency resolution [Mallat98]). In the rest of this thesis, the
wavelet function is considered to be real.

2Other authors ([Daubechies92, Jawerth93] for example) define the transform for all a 6= 0.
It is therefore necessary to introduce an absolute value in equation (2.3).

3< f, g >= A < f̂, ĝ >, the value of A depends on the definition of the Fourier transform.
Here, A = 1

2π
.

4Also known as the Weyl-Heisenberg uncertainty principle. Here, we use the vocabulary
introduced by E. Cornell [Cornell98].
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2.2.2 The Weyl-Heisenberg undeterminacy relation

Theorem 2 (Weyl-Heisenberg undeterminacy relation) Given a function
f ∈ L2(R) such that ‖f‖2 = 1, the Weyl-Heisenberg relation indicates that

(∫ +∞

−∞
(x− x̄)2|f(x)|2dx

)

︸ ︷︷ ︸

σ2
x

(∫ +∞

−∞
(ξ − ξ̄)2|f̂(ξ)|2dξ

)

︸ ︷︷ ︸

σ2
ξ

≥ A (2.5)

Where

• x̄ =
∫+∞
−∞ x|f(x)|2dx ;

• ξ̄ =
∫+∞
−∞ ξ|f(ξ)|2dξ.

Proofs of this theorem can be found in [Hubbard96, Mallat98] and in almost every
books about quantum physics. The value of A also depends on the definition of
the Fourier transform, here A = 1

4
. Optimizing equation (2.5) using techniques

based on the calculus of variations (see [Duong97] for an introduction) shows that
Gauss functions of the formK(a)e−ax

2
satisfy the optimum. A direct consequence

of the theorem is that a function cannot be simultaneously well localized in both
the time and the frequency domain, and it is obviously true for the wavelet
function in equation (2.3).
By considering the time-frequency spread of ψa;b, it follows that most of the
information contained inWf (a, b) comes from the intervals [b+ax̄−aσx, b+ax̄+
aσx] (time domain) and [(ξ̄ − σξ)/a, (ξ̄ + σξ)/a] (frequency domain) [Jawerth93,
Mallat98]. These intervals define time-frequency windows, known as Heisenberg
boxes, whose areas depend on the translation and scale parameters. From Weyl-
Heisenberg relation, the area of a given box has a lower bound: 4σxσξ ≥ 2.
However, an interesting property of the wavelet transform is that the dimensions
of a given window can be adapted according to the “subject” of interest (as
opposite to the windowed Fourier transform). Typically, it consists in using a
“good” time resolution for studying the high frequencies and a “good” frequency
resolution for the low frequencies.

2.2.3 Inversion of the continuous wavelet transform

Theorem 3 (Calderón identity) If the wavelet ψ ∈ L2(R) satisfies the admis-
sibility condition

Cψ =
∫ +∞

0

|ψ̂(ξ)|2
ξ

<∞

then every function f ∈ L2(R) is such that

f(x) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf (a, b)ψa;b(x)

dbda

a2
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Proofs of this result can be found in [Mallat98, Daubechies92]. This identity
has been rediscovered in [Grossmann84] and was known in harmonic analysis
since 1964. The admissibily condition requires that ψ̂(0) =

∫+∞
−∞ ψ(x)dx = 0

which means that the wavelet must be an oscillating function5. Note that a
given function can also be reconstructed from its wavelet transform using another
wavelet [Starck92] χ(x) if

∫ +∞

0

χ̂(ξ)ψ̂∗(ξ)

ξ
dξ <∞

the inversion formula is then given by

f(x) =
∫ +∞

0

∫ +∞

−∞
W(a, b)χa;b(x)

dbda

a2

2.2.4 Reproducing kernel

Now by inserting the Calderón identity in equation (2.3), we end up with

Wf(a0, b0) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wf (a, b)κ(a, a0, b, b0)

dbda

a2
(2.6)

where κ(a, a0, b, b0) =< ψa;b, ψa0;b0 > is called a reproducing kernel6 [Mallat98].
The modulus of the reproducing kernel measures the correlation between the
two wavelets ψa;b and ψa0;b0 and illustrates the redundancy of the continuous
wavelet transform. Note that any function Φ(a, b) is the wavelet transform of
some function f ∈ L2(R) if and only if it satisfies equation (2.6).

2.2.5 Scaling function

When the wavelet transform is known only for a < a0, f cannot be recovered
from its wavelet coefficients. Basically, the Calderón identity is broken into two
parts

f(x) =
1

Cψ

∫ a0

0

∫ +∞

−∞
Wf(a, b)ψa;b(x)

dbda

a2
+

1

Cψ

∫ +∞

a0

∫ +∞

−∞
Wf (a, b)ψa;b(x)

dbda

a2

The role of the scaling function φ is to provide the information presents in the
second term of the previous equation so that it becomes equal to

∫ +∞

−∞
Lf (a0, b)φa0;b(x)db, Lf(a, b) =< f, φa;b >

5Or the null function which is limited in interest.
6If the original function is reconstructed using another wavelet, the reproducing kernel be-

comes κ(a, a0, b, b0) =< χa;b, ψa0;b0 >.
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By using the fact that Wf (a, b) = f ⊗ ψ̄a(b), Lf(a, b) = f ⊗ φ̄a(b) and that
∫ +∞

−∞
Wf (a, b)ψa;b(x)db = Wf (a, .)⊗ ψa(x),

∫ +∞

−∞
Lf(a, b)φa;b(x)db = Lf(a, .)⊗ φa(x)

we end up with

f ⊗ φ̄a0 ⊗ φa0 = f ⊗Ψ(x), Ψ(x) =
∫ +∞

a0
ψ̄a ⊗ ψa(x)

da

a2

This leads, via the convolution theorem, to the following constraint on |φ̂(ξ)|2

|φ̂(ξ)|2 =
∫ +∞

1
|ψ̂(aξ)|2da

a2

The phase of φ̂(ξ) can be arbitrarily chosen [Mallat98].

2.2.6 Examples of wavelets

This subsection is obviously not exhaustive and gives two examples of wavelet
given in [Starck92].

Morlet’s wavelet

The Morlet’s wavelets is a complex wavelet whose real part is given by

ℜ{ψ}(x) = 1√
2π
e−

x2

2 cos 2πν0x

and imaginary part by

ℑ{ψ}(x) = 1√
2π
e−

x2

2 sin 2πν0x

ν0 is a constant term. For this wavelet, the admissibility condition is not satisfied
but if ν0 is sufficiently large it becomes “pseudo-admissible” [Starck92]. See
figure 2.1 (a) & (b) (ν = 0.4).

Mexican hat

The mexican hat is defined as the second derivative of a gaussian, its expression
is therefore given by

ψ(x) = (1− x2)e−
x2

2

The well-known property of the Fourier transform: df(n)

dxn (x) ⇔ (iξ)nf̂(ξ) implies

directly that ψ̂(0) =
∫+∞
−∞ ψ(x)dx = 0 and the fact that the first-order moment of

a Gauss function is finite proove that this wavelet is admissible. See figure 2.1 (c).
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Figure 2.1 Examples of wavelets.
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2.3 Dyadic wavelet transform

A dyadic wavelet transform is obtained by discretizing the scale parameter a
according to the dyadic sequence {2j}j∈Z . In order to preserve the translation
invariance property of the continuous wavelet transform the translation parameter
is not discretized. Under particular conditions, the dyadic wavelet coefficients can
be computed using a fast algorithm, known as an algorithme à trous.

2.3.1 Definition and inversion formula

Definition 4 (Dyadic wavelet transform) The dyadic wavelet transform of
f ∈ L2(R) is defined as

Wf (2
j, b) =< f, ψ2j ;b >, ψ2j ;b(x) =

1√
2j
ψ

(

x− b

2j

)

(2.7)

If the frequency plane is completly covered by dilated dyadic wavelets, then the
dyadic wavelet transform defines a complete and stable7 representation. The fol-
lowing theorem relates the dyadic wavelet transform to the frame theory [Mallat98,
Daubechies90, Daubechies92] and gives an inversion formula.

Theorem 4 If there exists two constants A,B ∈ R2+∗ such that

∀ξ ∈ R, A ≤
+∞∑

j=−∞
|ψ̂(2jξ)|2 ≤ B

7The terms “complete” and “stable” should be understood in a frame theory con-
text [Duffin52, Daubechies90, Mallat98]. Roughly, a sequence {θn}n∈τ is said to be a frame
of an Hilbert space H if there exist A,B ∈ R2+∗ so that ∀f ∈ H, A‖f‖2 ≤

∑

n∈τ | <
f, θn > |2 ≤ B‖f‖2. This is a necessary and sufficient condition so that the operator
Uf [n] =< f, θn > is invertible on its image with a bounded inverse. If A = B the frame
is said to be tight and if A = B = 1 the frame is an orthogonal basis of H [Daubechies90]. See
(notably) [Mallat98, Daubechies90, Daubechies92] for more details.
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then

A‖f‖2 ≤
+∞∑

j=−∞

1

2j
‖Wf(2

j, b)‖2 ≤ B‖f‖2

Moreover, if χ satisfies

∀ξ ∈ R+,
+∞∑

j=−∞
ψ̂∗(2jξ)χ̂(2jξ) = 1 (2.8)

then

f(x) =
+∞∑

j=−∞

∫ +∞

−∞
Wf(2

j , b)χ2j ;b(x)db (2.9)

A proof of this theorem can be found in [Mallat98, Daubechies90]. χ denotes the
reconstruction wavelet.

2.3.2 Reproducing kernel

As in the continuous case, the dyadic wavelet transform is a redundant repre-
sentation whose redundancy is illustrated by a reproducing kernel equation. By
inserting equation (2.7) in equation (2.9), we end up with

W(2j0 , b0) =
+∞∑

j=−∞

∫ +∞

−∞
Wf (2

j, b)κ(j, j0, b, b0)db (2.10)

where κ(j, j0, b, b0) =< χ2j ;b, ψ2j0 ;b0 >. Another equivalent way8 of seeing this
reproducing kernel [Mallat92b] consists in using the fact that Wf (2

j, b) = f ⊗
ψ̄∗2j (b) and that f(x) =

∑

jWf (2
j, .) ⊗ χ2j (x). Inserting the last expression of

f(x) in the one of Wf (2
j0, b0) gives

Wf(2
j0, b0) =

+∞∑

j=−∞
Wf (2

j, .)⊗ κ′2j ,2j0 (b0), κ
′
2j ,2j0 (b) = χ2j ⊗ ψ̄∗2j0 (b) (2.11)

2.3.3 Dyadic wavelets and algorithme à trous

If the wavelets and scaling functions are properly designed, the dyadic wavelet
transform can be computed via a fast algorithm based on filter banks [Mallat98,
Mallat92b, Rioul92, Shensa92], known as an algorithme à trous. It requires that
there exists two discrete filters h and g with

∑

k hk =
√
2 so that the scaling

function φ and the wavelet ψ respectively satisfy

φ̂(ξ) = ĥ(ξ/2)φ̂(ξ/2) (2.12)

8This holds for the continuous wavelet transform as well.
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and
ψ̂(ξ) = ĝ(ξ/2)φ̂(ξ/2) (2.13)

where ĥ(ξ) = 1√
2

∑

k hke
−iξk is the Fourier transform of the distribution 1√

2

∑

k hkδk
(same for ĝ(ξ)). If Lf(2j, b) =< f, φ2j ;b > is known, we can calculate

Wf(2
j+1, b) =< f, ψ2j+1;b > and Lf(2j+1, b) =< f, φ2j+1;b >

by using only the discrete filters h and g. Since Lf(2j+1, b) = f ⊗ φ̄2j+1(b), we
have9 (from equation (2.12))

Lf(2j+1, b) ⇔ f̂(ξ)φ̂∗2j+1(ξ)

= ĥ∗2j f̂(ξ)φ̂∗2j(ξ)

⇔ h̄2j ⊗Lf(2j , .)(b) (2.14)

The same kind of argument gives

Wf (2
j+1, b) = ḡ2j ⊗Lf(2j , .)(b) (2.15)

h2j (resp. g2j ) is obtained from h (resp. g) by inserting 2j − 1 zeros between
the samples of h (resp. g). The pair ϕ, χ (respectively the scaling function
and wavelet) used for reconstructing the signal should as well satisfy two similar
equations as (2.12) and (2.13) with filters h̃ and g̃ instead of h and g. Obviously,
we must be able to recover Lf(2j, b) from Lf(2j+1, b) and Wf (2

j+1, b). This is
done via the following formula

Lf(2j, b) = g̃2j ⊗Wf(2
j+1, .)(b) + h̃2j ⊗ Lf(2j+1, .)(b) (2.16)

Algorithm 2.1 illustrates the working of the algorithm. Equation (2.15) is equiv-
alent to

Lf(2j, b) = (h̄2j ⊗ h̃2j + ḡ2j ⊗ g̃2j )⊗ Lf(2j, .)(b)
Therefore, the required perfect reconstruction introduces the constraint

ĥ∗(ξ)ˆ̃h(ξ) + ĝ∗(ξ)ˆ̃g(ξ) = 1, ∀ξ ∈ [−π, π]

which is equivalent to condition (2.8) (proof in [Mallat98]).

2.3.4 Practical considerations

In practical cases, i.e. discrete signals of finite duration, the convolutions in equa-
tions (2.14), (2.15) and (2.16) are replaced by circular convolutions. Since the
scalar product of the discrete sequence with φ2log2 N ;k is constant [Mallat98] (N is

9The convolution operators in equations (2.14), (2.15) and (2.16) should be understood in
a distribution theory context. See [Duong97].
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Algorithm 2.1 Algorithme à trous.

µj(b) =< f, φ2j ;b >= Lf(2j, b)
γj(b) =< f, ψ2j ;b >=Wf (2

j, b)
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the length of the signal), the scale only goes from 20 = 1 to 2log2N . Most of the
time, the samples of the discrete input sequence are considered as the average
of a function f weighted by φ(x − k) and give the first approximation required
for starting the algorithm. The complexity of the algorithm is in O(N log2N).
Figure 2.2 shows the dyadic wavelet transform of a signal computed by means of
the quadratic spline wavelet given in [Mallat92b].

2.4 Multiresolution analysis of L2(R)

The multiresolution analysis introduced by Stéphane Mallat in 1989 [Mallat89a]
provides a theoretical context in which non redundant and orthogonal wavelet
decompositions arise. However, the definition of a multiresolution analysis does
not require any constraint of orthogonality. In this section we focus on the ba-
sic properties of a multiresolution analysis and their implications on the pair
wavelet/scaling function.

2.4.1 Definition

Definition 5 (Multiresolution analysis) A multiresolution analysis is a set
of closed subspaces Vj of L2(R), which satisfies the following six properties10

[Mallat89a, Jawerth93, Hubbard96]

1. Vj ⊂ Vj+1, ∀j.

2. v(x) ∈ V0 ⇔ v(x− k) ∈ V0, ∀k ∈ Z.

3. v(x) ∈ Vj ⇔ v(2x) ∈ Vj+1, ∀j ∈ Z.

4. limj→−∞ Vj =
⋂+∞
j=−∞ Vj = {0}.

10Some authors [Mallat98, Daubechies92] use Vj+1 ⊂ Vj and f(x) ∈ Vj ⇔ f(x/2) ∈ Vj+1 for
(respectively) properties 1 and 3.
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Figure 2.2 Beginning of a dyadic wavelet transform.
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5. limj→+∞ Vj =
⋃+∞
j=−∞ Vj = L2(R).

6. There exists a scaling function φ ∈ L2(R) such that {τkφ}k∈Z is a Riesz
basis of V0.

Property 1 (causality property) means that an approximation in Vj contains all
the information for computing an approximation at a coarser resolution. Prop-
erty 2 indicates that V0 is invariant under integer translations. Property 3 says
that the null fonction is the only common object to all the subspaces Vj , i.e. we
lose all the details about f as j goes to −∞. Property 4 means that every func-
tions of L2(R) can be approximated to an arbitrary precision. The definition of a
Riesz basis (property 6) is available page 123. Properties 3 and 6 directly imply
that the family {φj;k}k∈Z (now φj;k(x) stands for

√
2jφ(2jx − k)) forms a Riesz

basis of Vj.
Simple examples of multiresolution analysis are: the piecewise constant appro-
ximations (related to the Haar wavelet), the shannon approximations (related
to the Shannon wavelet) and the spline approximations, the two first examples
defines some orthogonal multiresolutions while the third defines a non-orthogonal
one, more details are avalaible in [Mallat98, Jawerth93].

2.4.2 Dilation equation and basic consequences

Theorem 5 (Dilation equation) Let φ ∈ L2(R) be the scaling function of a
multiresolution analysis, then [Jawerth93, Daubechies92]

∃{hk}k∈Z/φ(x) =
√
2

+∞∑

k=−∞
hkφ(2x− k) (2.17)

This theorem follows directly from properties 1 and 6: as a function of V0 (proper-
ty 6) and because V0 ⊂ V1 (property 1), φ can be expressed as a linear combination
of the basis function of V1.
Equation (2.17) is known as a dilation equation [Strang94] or a scaling equa-
tion [Mallat98] and plays a fundamental role in the orthogonal dyadic wavelet
theory. Integrating equation (2.17) on both sides implies that

∑

k hk =
√
2.

Introducing the dilation equation in the Fourier transform of φ leads to

φ̂(ξ) = ĥ(ξ/2)φ̂(ξ/2) (2.18)

where ĥ(ξ) = 1√
2

∑

k hke
−iξk denotes the Fourier transform (2π-periodic) of the

distribution 1√
2

∑

k hkδk. Equation (2.18) can be used recursively and gives (at

least formally)

φ̂(ξ) =
∞∏

k=1

ĥ(ξ/2k)
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This product can be interpreted as an infinite cascade of convolutions of the
distribution 1√

2

∑

k hkδk by itself, its convergence properties are (notably) studied

in [Daubechies88].

2.4.3 Complementary subspaces

Let Wj denotes the subspace complementing Vj in Wj+1 i.e.

Vj+1 = Vj ⊕Wj

where ⊕ denotes the direct sum operator. As a consequence of property 5, we
have

⊕+∞
j=−∞Wj = L2(R).

Definition 6 (Wavelet function) In a multiresolution context, a function ψ
is said to be a wavelet function if the family {τkψ}k∈Z is a Riesz basis of the
complementary subspace W0 [Jawerth93].

As a function of V1, the wavelets also obey a dilation equation

ψ(x) =
√
2

+∞∑

k=−∞
gkφ(2x− k)

which leads to
ψ̂(ξ) = ĝ(ξ/2)φ̂(ξ/2) (2.19)

and (as in the case of the scaling function) to an infinite product of the form

ψ̂(ξ) = ĝ(ξ/2)
+∞∏

k=2

ĥ(ξ/2k)

The family of functions {ψj;k}j,k∈Z2 forms a Riesz basis of L2(R) [Jawerth93,
Mallat98]. As a consequence, every functions of L2(R) can be written as

f(x) =
+∞∑

j=−∞

+∞∑

k=−∞
µj;kψj;k(x) (2.20)

This equation can be seen as an inverse wavelet transform where the scale and
the translation parameters have been discretized.

2.5 Orthogonal multiresolution analysis

2.5.1 Definition and perfect reconstruction constraint

Definition 7 (Orthogonal multiresolution analysis) An orthogonal multi-
resolution analysis is a multiresolution analysis such that for all j ∈ Z, Wj is the
orthogonal complement of Vj in Vj+1 [Jawerth93, Daubechies92].
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A sufficient condition for a multiresolution to be orthogonal is given by [Jawerth93]

V0 ⊥W0 i.e. < φ, τkψ >= 0, ∀k ∈ Z (2.21)

A consequence of this definition is the existence of an unique scaling function φ
so that the family {τkφ}k∈Z forms an orthogonal basis of V0 [Mallat89a], i.e.

< φ, τkφ >= δ0,k, ∀k ∈ Z (2.22)

Now, the families {φj;k}k∈Z , {ψj;k}k∈Z and {ψj;k}j,k∈Z2 form orthogonal basis of
(respectively) Vj, Wj and L2(R) (proof in [Mallat98]). Hence, in this context,
equation (2.20) can be written as

f(x) =
+∞∑

j=−∞

+∞∑

k=−∞
< f, ψj;k > ψj;k(x)

By using the Poisson formula (equation (2.2)), equation (2.22) is equivalent to

F (ξ) =
+∞∑

k=−∞
|φ̂(ξ + 2kπ)|2 = 1 (2.23)

Since (from equation (2.18) and from the fact that both F (ξ) and ĥ(ξ) are 2π-
periodic)

F (2ξ) =
+∞∑

k=−∞
|φ̂(2ξ + 2kπ)|2

=
+∞∑

k=−∞
|ĥ(ξ + kπ)|2|φ̂(ξ + kπ)|2

=
+∞∑

k=−∞
|ĥ(ξ + 2kπ)|2|φ̂(ξ + 2kπ)|2

+
+∞∑

k=−∞
|ĥ(ξ + π + kπ)|2|φ̂(ξ + π + kπ)|2

= |ĥ(ξ)|2F (ξ) + |ĥ(ξ + π)|2F (ξ + π)

we end up with the following theorem [Jawerth93, Mallat98, Daubechies88].

Theorem 6 (Perfect reconstruction) Let φ ∈ L2(R) be the scaling function
of an orthogonal multiresolution, then ĥ(ξ) satisfies11

|ĥ(ξ)|2 + |ĥ(ξ + π)|2 = 1 (2.24)

11Note that the right hand side depends on the definition of ĥ(ξ). Here: ĥ(ξ) =
1√
2

∑

k hke
−iξk. Other authors [Daubechies88, Mallat98] end up with the right hand side equals

to 2.
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This constraint is fundamental for the design of orthogonal wavelets and connects
wavelets to the conjuguate quadrature filters (tree-structured subband coders
with exact reconstruction [Smith86]) theory12 [Daubechies88, Mallat98, Cohen92a].
Note that equation (2.24) is a sufficient condition so that φ ∈ L2(R) [Cohen92a].

2.5.2 Relation between ĥ(ξ) and ĝ(ξ)

Now consider the sufficient condition for a multiresolution to be orthogonal (equa-
tion (2.21)), again from Poisson formula it is equivalent to

G(ξ) =
+∞∑

k=−∞
φ̂(ξ + 2kπ)ψ̂∗(ξ + 2kπ) = 0

which leads to (from equations (2.18), (2.19) and (2.23))

G(2ξ) =
+∞∑

k=−∞
φ̂(2ξ + 2kπ)ψ̂∗(2ξ + 2kπ)

=
+∞∑

k=−∞
ĥ(ξ + kπ)ĝ∗(ξ + kπ)|φ̂(ξ + kπ)|2

=
+∞∑

k=−∞
ĥ(ξ + 2kπ)ĝ∗(ξ + 2kπ)|φ̂(ξ + 2kπ)|2

+
+∞∑

k=−∞
ĥ(ξ + π + 2kπ)ĝ∗(ξ + π + 2kπ)|φ̂(ξ + π + 2kπ)|2

= ĥ(ξ)ĝ∗(ξ) + ĥ(ξ + π)ĝ∗(ξ + π) = 0

This implies the following relation [Jawerth93]

ĝ(ξ) = α(ξ)ĥ∗(ξ + π)

where α(ξ) is a 2π-periodic function such that α(ξ) = −α(ξ + π). Now, from
Parseval theorem, equation (2.22) can be written as

1

2π

∫ +∞

−∞
|ĥ(ξ/2)|2|φ̂(ξ/2)|2e−iξkdx = δ0,k, ∀k ∈ Z (2.25)

Since

< ψ, τkψ > =
1

2π

∫ +∞

−∞
|ψ̂(ξ)|2e−iξkdξ

=
∫ +∞

−∞
|ĝ(ξ/2)|2|φ̂(ξ/2)|2e−iξkdξ

12For every orthogonal bases of compactly supported wavelets, there exists a pair of discrete
filters which defines a subband coder allowing perfect reconstruction [Cohen92a] (the opposite
is not generally true).
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=
∫ +∞

−∞
|α(ξ/2)|2|ĥ(ξ/2 + π)|2|φ̂(ξ/2)|2e−iξkdξ

=
∫ +∞

−∞
|α(ξ/2)|2|ĥ(ξ/2)|2|φ̂(ξ/2)|2e−iξkdξ

the orthogonality of the wavelet is implied by the orthogonality of the scaling
function if |α(ξ)|2 = 1. We then impose the following constraint: if the scaling
function has a compact support, i.e. ĥ(ξ) is a trigonometric polynomial, the
wavelet must have a compact support. This constraint requires that α(ξ) is a
trigonometric polynomial as well. The only trigonometric polynomials which
have these two properties are of the form

α(ξ) = Ke−i(2k+1)ξ

with |K| = 1. Choosing K = ±1 implies that if the coefficients {hk}k∈Z are real,
then the coefficients {gk}k∈Z are also real. The “classical” choice [Jawerth93,
Daubechies88] is α(ξ) = −e−iξ and leads to

ĝ(ξ) = −e−iξĥ∗(ξ + π) (2.26)

= −e−iξ
+∞∑

−∞
h∗ke

i(ξ+π)k

= −
+∞∑

k=−∞
(−1)kh∗ke−iξ(1−k)

=
∞∑

l=−∞
(−1)lh∗1−le−iξl

hence
gk = (−1)kh∗1−k (2.27)

Other authors (notably) [Mallat98] choose α(ξ) = e−iξ and then end up with
gk = (−1)1−kh∗1−k instead of equation (2.27).

2.5.3 Extension: biorthogonal multiresolution analysis

The notion of biorthogonal multiresolution analysis [Cohen92a, Jawerth93] gene-
ralizes the idea of multiresolution analysis by using different scaling function/wa-
velet pairs for respectively the decomposition and the reconstruction of the signal.
The idea consists in defining two ladders of closed subspaces13

. . . ⊂ V−j ⊂ . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ Vj ⊂ . . .

and
. . . ⊂ Ṽ−j ⊂ . . . ⊂ Ṽ−1 ⊂ Ṽ0 ⊂ Ṽ1 ⊂ . . . ⊂ Ṽj ⊂ . . .

13As in the simple multiresolution case some authors ([Cohen92a] notably) are using . . . ⊃
Vj ⊃ Vj+1 ⊃ . . . and . . . ⊃ Ṽj ⊃ Ṽj+1 ⊃ . . . instead of the previous definition.
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such that they respectively lead to a multiresolution analysis and a dual mul-
tiresolution analysis. Moreover, it is required that

W̃j ⊥ Vj and Wj ⊥ Ṽj

so that {ψj;k}j,k∈Z2 and {ψ̃j;k}j,k∈Z2 define two dual Riesz basis of L2(R). By
mimicing the orthogonal case, it is possible to derive conditions on the four filters
h, g, h̃, g̃ such that they lead to a perfect reconstruction subband coding scheme
(with different analysis and synthesis filters). For more precisions the reader is
sent to (notably) [Cohen92a, Mallat98].
Finally, every function f ∈ L2(R) can be expressed as [Cohen92a]

f(x) =
+∞∑

j=−∞

+∞∑

k=−∞
< f, ψj;k > ψ̃j;k(x) =

+∞∑

j=−∞

+∞∑

k=−∞
< f, ψ̃j;k > ψj;k(x)

which illustrates the fact that the role of the two basis can be interchanged. The
interest of building biorthogonal multiresolution analysis comes from the fact that
more freedom is allowed in the design of the wavelets/filters and that it becomes
possible to create symetric wavelets.

2.6 Orthogonal wavelets and fast algorithm

2.6.1 Fast orthogonal wavelet transform

Now let µj;k =< f, φj;k >= Lf(2−j, 2−jk) and γj;k =< f, ψj;k >=Wf (2
−j, 2−jk).

Generalizing the scaling equation (2.17) gives

φj;k(x) =
+∞∑

l=−∞
hlφj+1;2k+l(x)

=
+∞∑

m=−∞
hm−2kφj+1;m

Putting this last equation in the expression of µj;k leads to

µj;k =
+∞∑

l=−∞
hl−2k < f, φj+1;l >

=
+∞∑

l=−∞
h̄2k−lµj+1;l = h̄⊗ µj+1[2k] (2.28)

The same kind of arguments gives

γj;k = ḡ ⊗ µj+1[2k] (2.29)
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Equations (2.28) and (2.29) are discrete convolutions followed by a downsampling
operation. We come back to the µj+1;k from the µj;k and the γj;k by inserting

fj+1(x) =
+∞∑

l=−∞
µj;lφj;l(x)

︸ ︷︷ ︸

∈Vj

+
+∞∑

l=−∞
γj;lψj;l(x)

︸ ︷︷ ︸

∈Wj

in µj+1;k =< f, φj+1;k >=< fj+1, φj+1;k >. Hence (and from the orthogonality of
the scaling function),

µj+1;k =
+∞∑

l=−∞
µj;l

+∞∑

m=−∞
hm−2l < φj+1;m, φj+1;k >

+
+∞∑

l=−∞
γj;l

+∞∑

m=−∞
gm−2l < φj+1;m, φj+1;k > (2.30)

=
+∞∑

l=−∞
µj;l

+∞∑

m=−∞
hm−2lδk,m +

+∞∑

l=−∞
γj;l

+∞∑

m=−∞
gm−2lδk,m

=
+∞∑

l=−∞
µj;lhk−2l +

+∞∑

l=−∞
γj;lgk−2l (2.31)

The first and second terms of this last equation are discrete convolutions pre-
ceded by an upsampling operation (insert one zero between every sample). See
algorithm 2.2.
Equations (2.28), (2.29) and (2.31) define a perfect reconstruction decimated fil-

Algorithm 2.2 Fast decimated filter bank algorithm.
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ter banks (perfect reconstruction subband coder). If we note µ̂j(ξ) =
∑

k µj;ke
−iξk

the discrete Fourier transform of the sequence {µj;k}k∈Z (same for γ̂j(ξ)) we have:
µ̂j(ξ) = ĥ∗(ξ/2)µ̂j+1(ξ/2), γ̂j(ξ) = ĝ∗(ξ/2)µ̂j+1(ξ/2) and µ̂j+1(ξ) = ĥ(ξ)µ̂j(2ξ) +
ĝ(ξ)γ̂j(2ξ). Therefore,

µ̂j+1(ξ) = (ĥ(ξ)ĥ∗(ξ) + ĝ(ξ)ĝ∗(ξ))µ̂j+1(ξ)
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The perfect reconstruction constraint is then given by ĥ(ξ)ĥ∗(ξ) + ĝ(ξ)ĝ∗(ξ) = 1
or in “Z-transform” notation

H(eiξ)H(e−iξ) +G(eiξ)G(e−iξ) = 1

this condition is equivalent to equation (2.24), using the expression of ĝ(ξ) derived
in §2.5.2, and (roughly) to the condition derived in [Smith86].

2.6.2 Practical considerations

There exists different ways of modifying the fast wavelet transform algorithm for
dealing with practical signals, i.e. sampled signals of finite duration. Most of the
time, (as in the algorithme à trous case), the samples are interpreted such that
they gives µ0;k. Note that the complexity of the algorithm is in O(log2N) (faster
than the fast Fourier transform—O(N log2N)).

Zero padding

The most intuitive way of dealing with the border problem consists in assuming
that the function vanishes outside the sampling interval i.e. ∈ L2([0, N ]). The fast
wavelet transform algorithm is therefore applied without modification. However,
the signal is interpreted as if it was discontinuous at x = 0 and x = N : large
coefficients are created in the neighbourhood of this points and significant errors
may appear during the reconstruction process.

Periodic wavelets

A better solution consists in using a proper orthogonal basis of L2([0, N ]). For
example, an orthogonal basis of L2([0, N ]) can be contructed by periodizing an
orthogonal wavelet basis of L2(R). By using the periodic extension of a function
f ∈ L2([0, N ]) i.e.

f (π)(x) =
∞∑

k=−∞
f(x+ kN)

it can be shown14 [Mallat98] that the family

{ψ(π)j;k }j,k∈Z2, ψ
(π)
j;k (x) =

√
2j

+∞∑

l=−∞
ψ(2jx− k + 2jlN)

forms an orthogonal basis of L2([0, N ]) such that

< ψ
(π)
j;k , ψ

(π)
j′;k′ >L2([0,N ])= δj,j′δk,k′

14The proof is based on using the fact that f(x) = f (π)(x), ∀x ∈ [0, N ], f ∈ L2([0, N ]) and
on periodizing the decomposition

∑

j

∑

k < f, ψj;k > ψj;k(x).
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and

f(x) =
+∞∑

j=−∞

+∞∑

k=−∞
< f, ψ

(π)
j;k >L2([0,N ]) ψ

(π)
j;k (x)

This is similar to consider a wavelet decomposition on a torus instead on the
the real line [Jawerth93] and the main modification is to replace the convolution
operators in equations (2.28), (2.29) and (2.31) by circular convolutions. However,
the problem of creating large coefficients in the neighbourhood of 0 and N is not
avoided since there is no garantee that f(0) = f(N).

Boundary wavelets

Using boundary wavelets avoids to create large wavelet coefficients at the border.
Basically, it consists in using modified wavelets functions, which have as many
vanishing moments as the original, for processing the borders. For a proper pre-
sentation, the reader is sent to [Cohen92b, Cohen93, Mallat98].

Note that folded wavelets are usable if the corresponding basis of L2(R) is con-
structed using symetric or antisymetric wavelets. This cannot occur in the one-
dimensional orthogonal case, but can happen for biorthogonal wavelets. This
solution preserves the continuity at the border but acts as if the signal had a
discontinuous first-order derivative in the neighbourhood of 0 and N .

2.6.3 Examples of orthogonal wavelets

This subsection gives some important properties that a wavelet function may have
(this list has been taken from [Jawerth93]) and presents a few families of orthog-
onal wavelet. Pointers to articles in which biorthogonal wavelets are constructed
are also given.

Properties of a wavelet function

Orthogonality. The orthogonality is convenient to have in many situations.
First, it directly links the L2-norm of a function to a norm on its wavelet coef-
ficients. Second, the fast wavelet transform is a unitary transformation (W−1 =
W †) which means that the condition number of the transformation (‖W‖‖W−1‖)
is equal to 1 (optimal case), i.e. stable numerical computations are possible.
Moreover, if the multiresolution is orthogonal the projection operators onto the
different subspaces (Vj, Wj) yield optimal approximations in the L

2 sense.

Compact support. If the wavelet has a compact support the filter h and g
have a finite impulse response. Obviously, this is convenient for implementing the
fast wavelet transform. However, if the wavelet does not have a compact support,
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a fast decay is required so that h and g can be reasonably approximated using
FIR filters.

Rational coefficients. For efficient computations, it can be interesting that
the coefficients of h and g are rational or dyadic rational. Binary shifts are much
faster than floating point operations.

Symmetry. If the scaling function and wavelet are symmetric, the filters h and
g have generalized linear phase. The absence of this property can lead to phase
distortion.

Regularity. As pointed in the works of Yves Meyer [Meyer90] and David Do-
noho [Donoho91a] the regularity of the multiresolution analysis is crucial for
many applications such as data compression, statistical estimation, . . . In the
biorthogonal case, the regularity of the primary multiresolution is more important
than the regularity of the dual one [Jawerth93].

Number of vanishing moments. The number of vanishing moments is con-
nected to the regularity of the wavelet and vice versa [Meyer90].

Analytic expressions. In some case, it can be useful to have analytic expres-
sions for the scaling function and wavelet.

Interpolation. If the scaling function satisfies

φ(k) = δk, k ∈ Z
then the computation of the first scaling coefficients (required for starting the
fast wavelet transform) is trivial and the assumption discussed in §2.6.2 is valid.

Obviously, a given multiresolution cannot satisfies all these properties (e.g. or-
thogonality, compact support and symmetry are exclusive properties in one di-
mension except for the Haar wavelet) and it is necessary to make a trade-off
between them.

Some families of orthogonal wavelets

The Haar transform. The Haar transform has been invented in 1910, long
before the invention of the terms “wavelet” and “multiresolution”. Some books
about image processing present it as a curiosity [Gonzales92]. The Haar trans-
form corresponds to an orthogonal multiresolution, associated with the following
scaling function and wavelet

φ(x) = χ[0,1](x), ψ(x) = χ[0,1/2](x)− χ[1/2,1](x)
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The discrete filter h is then equal to {1, 1}. However, the Haar transform is not
very used in practice because the analysing functions are too discontinuous. Note
that the Haar wavelet is a particular case of a Daubechies wavelet for N = 1.

The Shannon wavelet. The Shannon wavelet is constructed from the Shan-
non multiresolution approximations which approximates functions by their re-
strictions to low frequency intervals. The scaling function is then a cardinal sine
and the wavelet is equal to [Jawerth93]

ψ(x) =
sin 2πx− sin πx

πx

This wavelet is C∞ but it has a very slow time decay which makes it not suitable
for practical purpose.

Meyer and Battle-Lemarié. A more interesting example is given by the
Meyer wavelet and scaling function [Meyer90] which are C∞ and have faster
than polynomial decay (this makes them more suitable for practical purpose ac-
cording to the compact support property). φ and ψ are respectively symmetric
around 0 and 1

2
and ψ as an infinite number of vanishing moments (see [Meyer90]

for more details). The Battle-Lemarié wavelets are created by orthogonalizing
B-spline functions and have exponential decay. A Battle-Lemarié wavelet with
N vanishing moments is a piecewise polynomial of degree N − 1 belonging to
CN−2. See [Battle87, Lemarié88, Meyer90, Mallat98].

Daubechies wavelets. The first non-trivial compactly supported and orthog-
onal wavelet basis have been constructed by Ingrid Daubechies [Daubechies88].
A Daubechies scaling function/wavelet pair of orderM satisfies the two following
dilation equations

φ(x) =
√
2
2M−1∑

k=0

hkφ(2x− k)

and

ψ(x) =
√
2

1∑

k=−2M+2

gkφ(2x− k)

The coefficients {hk} (the {gk} are then given by (2.27)) are determined by solving
the following 2M equations

1

2

2M−1∑

l=0

hlhl−2k = δk, k = 0, . . . ,M − 1

and
2M−1∑

l=0

(−1)l+1lkhl = 0, k = 0, . . . ,M − 1
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The first set of equations is a reformulation of equation (2.24) via the Wiener-
Kintchine theorem15. The second set of equations expresses the fact that ψ must
have M vanishing moments, i.e.

∫ +∞

−∞
xkψ(x)dx = 0, k = 0, . . . ,M − 1

The resolution of this system of equations is done by finding a trigonomet-
ric polynomial ĥ(ξ) satisfying equation (2.24) and having a root of multiplic-
ity M at ξ = π. This is done by means of spectral factorization techniques
(see—notably— [Daubechies88, Bourges94, Mallat98]). The regularity of the
multiresolution analysis increases as N increases (roughly like 0.2075M for large
M [Jawerth93, Meyer94]). However, these wavelets cannot be symmetric (ex-
cept for M = 1 which corresponds to the Haar wavelet). Figure 2.3 presents
some scaling functions and wavelets of the Daubechies family. These functions
have been generated using a cascade algorithm [Delyon93, Bourges94] which
(roughly) consists in applying the inverse wavelet transform algorithm on re-
spectively the {hk} and the {gk}. The filter coefficients for M = 2, . . . , 10 are
available in [Daubechies88] (table 1, page 980).

Other orthogonal wavelet basis have been built using this philosophy. An in-
teresting example is the coiflets contructed by Ronald Coifman [Beylkin91]. For
this family, the scaling function also has some vanishing moments (except the first
one) and these functions leads to discrete filters having 3M − 1 non-zero coeffi-
cients. See [Beylkin91]. Other families of orthogonal and biorthogonal wavelets
are (notably) designed in [Cohen92a, Vetterli92], [Mallat98] provides an up-to-
date exposition on the subject.

15For discrete-time signals: F {
∑

l flfl−k} = |f̂(ξ)|2 where f̂(ξ) =
∑

k fke
−iξk.
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Figure 2.3 Some of the Daubechies scaling functions and wavelets.
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Chapter 3

Image fusion in orthogonal

wavelet basis

Introduction

The image fusion problem can be stated as follows: given two images containing
complementary information, we want to build a new image which exhibits the
relevant information present in both original images. Obviously, this problem
can be expressed in a more general way where more than two images are avai-
lable. An image fusion procedure is a low-level image processing task which
aims at preparing higher-level processing. For example, a human brain is not
able to fully and fastly integrate data coming from different sources. In that
case, an image fusion operation prepares the data so that they are more easily
understandable for a human operator, e.g. the driver of a car at night. Another
field, known as data fusion [Bloch94, Bloch96], also exploits multisensor data (not
necessarily images) in order to access higher-level cognitive functions, e.g. decision
making. An example of application is target recognition via the Dempster-Shafer
theory [Janez97, Shafer76].
In order to design an image fusion algorithm, one has to define clearly what a “re-
levant information” is, and to find a fusion operator (acting on some “convenient
decompositions” of the source images) which has a correct behavior according to
this definition. A simple fusion algorithm can consist in performing a pixel-by-
pixel averaging of the source images but, as we will see later, this is not a correct
solution. Here, the fusion problem is seen as a sharpest singularity selection
problem and this task is performed by applying a non-linear operator on the
decompositions of the images onto an orthogonal wavelet basis, i.e.

f(x) =
+∞∑

j=−∞

+∞∑

k=−∞
ϑ(γ

(1)
j;k , γ

(2)
j;k)ψj;k(x)
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where γ
(1)
j;k and γ

(2)
j;k denote the coefficients of the (orthogonal) wavelet decompo-

sitions of the two source functions/images.
The chapter is organized as follows: we first give a short litterature survey, then
state the problem of image fusion in both multifocus and multisensor contexts
and study the limitations of an approach based on linear operators or operators
acting directly on the images. We then study the behavior of the wavelet coeffi-
cients of some one-dimensional signals containing isolated Hölder-0 singularities,
and derive a one-dimensional fusion operator which is relevant in the context of
sharpest singularity selection. These results are extended to the two-dimensional
case and some experimental results are presented for both multifocus and multi-
sensor data. Finally, we theoretically study the design of a fusion operator which
takes into account the presence of a gaussian white noise.

3.1 Previous work and litterature survey

Different methods have been proposed for performing image fusion tasks in a mul-
tisensor context. Before the coming of wavelet based techniques, other multiscale
decompositions have been used such as: the Laplace pyramid [Burt83, Jahne95]
(also known as the difference of low-pass—DoLP—pyramid) or the ratio of low-
pass (RoLP) pyramid [Toet89, Toet92]. These different methods have been ex-
plored in a previous MSc thesis by Philip Cotterel [Cotterel97] where DoLP-and-
RoLP-based fusion algorithms are tested and reasonnable results are obtained.
Note that a morphological-difference-pyramid-based fusion scheme has also been
implemented and tested. For more details, the reader is sent to [Cotterel97]. The
main differences between this work and the current thesis concern the registra-
tion procedure (they were mapping the NIR image onto the FIR one while we
are doing the opposite) and obviously the abscence of wavelets.
Concerning wavelet based techniques, Wilson and al [Wilson95] proposed an
image fusion algorithm for the AVRIS sensor1 which is based on an empirical
perceptual-based fusion operator (“optimal” for a resolution of 1024× 1280 and
for an average viewing distance of 61 cm) applied on the wavelet decompositions
of the images to be fused. Finally, the work of Li and al [Li95b] is very close to
the current one: they introduce a pixel-by-pixel maximum selection rule and an
area-based maximum selection rule (both acting on the wavelet decompositions
of the images to be fused) and empirically test their performances on a wide
range of fusion problems (multifocus, MRI-PET, Landsat-Spot, Landsat-Seasat
and visible-thermal images) with different classes of wavelets. There also exists
some difficult-to-find references, foreseen on the internet, which are ignored since
we have not been able to get sufficient precisions for localizing them.

1Airborne Visible/Infrared Imaging Spectrometer. This sensor simultaneously records in-
formation in hundred of spectral bands and produces fully registered images, for more details
see [Wilson95, Porter87].
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3.2 Multifocus and multisensor data

3.2.1 The multifocus problem

The multifocus problem is probably the easiest to deal with. Basically, a scene,
which contains different objects situated at different distances from the camera,
is imaged. For a given image, only one object in the scene is in focus. In general,
test images are generated from a scene containing two objects. We then have
to fuse two images in which the two scenari: blurred/clear and clear/blurred
occur for (respectively) the two objects. This problem is relatively easy because
(contrary to the multisensor case) we have an idea of the result we want: an
image containing the two well-focused objects. Moreover, the multifocus pairs
are perfectly registered. This allows us to test the fusion procedure without
introducing any artifacts due to registration problems.
We have used two sets of data, coming from the internet:

1. Two objects: a can and some text coming from
www.lehigh.edu/zhz3/IF_example1.html.

2. Two clocks (used in [Li95b]) coming from
vivaldi.ece.ucsb.edu/projects/registration/fusion.html.

Figure 3.1 shows the two pairs of test images.

3.2.2 The multisensor problem

The multisensor problem is trickier than the multifocus one for two main rea-
sons: first, we do not have a clear idea of the desired result and second, the two
(or more) images do not have the same “nature” (the first reason is probably a
consequence of the second one). Since the two images depend on totally different
physical properties of the imaged objects (reflection of light for the NIR image
and temperature for the FIR—thermal—one), an object can, for example, be
bright on a dark background in one of the two images and dark on a bright
background in the other one (this scenario cannot occur in the multifocus case).
This problem is illustrated in figures 3.9 (page 68) and 3.10 (page 69), e.g. the
trees. Figure 3.2 shows a typical NIR/FIR pair. Studying figure 3.2 gives us an
idea of the desired result. Basically, we want the “well-defined” objects (in some
sense which is to be defined) present in the FIR image (e.g. the trees, the post, . . . )
and those present in the NIR one (e.g. the bottom right car, the window, . . . ) to
be visible without any degradation in the fused image. An informal definition of
a “well-defined” object can be based on the sharpeness of its frontier since sharp
transitions/contours are very important attributes for image analysis (both on a
“human” and a “machine” point of vue) [Gonzales92, Jahne95, Deriche, Meyer94].
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Figure 3.1 Examples of multifocus data.

(a) The “can” pair.

(c) The “clocks” pair.
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Figure 3.2 Example of multisensor data.

(a) NIR image. (b) FIR image.

3.3 Linear operators

As stated in the introduction (page 49), the simplest fusion algorithm consists
in using a linear (or non-linear) operator acting directly on the image without
transforming it. The most popular one is the pixel-by-pixel averaging which
implies a loss of constrast if an object is visible in only one of the two images, or
if its NIR and thermal properties are not compatible e.g. it is bright in the NIR
image and dark in the FIR one. Therefore, this kind of operator is not usable for
both multifocus (local blurring also implies a loss of intensity) and multisensor
data. Concerning the non-linear operators acting directly on the image, one can
used a maximum-based selection which provides reasonnable results when the
different frames are seen independantly. However, the fused images seem to be
very unstable and highly sensitive to registration problems [Cotterel97].

3.4 Wavelet transform of some Hölder-0 singu-

larities

The two next subsections give some formal arguments which explain the relevancy
of using an area-based maximum selection rule for image fusion. As discussed
in §3.2.2, an object is said to be well-defined if it has a sharp frontier with the
“outside world”. This frontier can be modelised by the presence of a Hölder-0
singularity. Its degree of smoothness (expressed as a convolution with a gaussian
operator) gives a measure of its saliency. Here, we focus on the one-dimensional
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problem: we first study the wavelet coefficients of a sharp Hölder-0 singularity,
then introduce a smoothed singularity model and finally study the consequences
of the smoothing on its wavelet coefficients.

3.4.1 Sharp Hölder-0 singularity

A sharp Hölder-0 singularity corresponds to a Heaviside-like singularity of the
form f(x) = τνU(x) where

U(x) =

{

1 if x ≥ 0
0 otherwise

We consider an orthogonal wavelet ψ with at least one vanishing moment, such
that

suppψ = [a, b]⇔ suppψj;k = [a/2j + k, b/2j + k]

ψj;k should be understood in a multiresolution context (see §2.4.1). The wavelet
coefficients γj,k =< f, ψj;k > are then equal to

γj;k =

{ ∫ b/2j+k
ν ψ∗j;k(x)dx if [ν − b/2j, ν − a/2j ]
0 otherwise

Hence, the wavelet coefficients vanish if the support of the wavelet does not
overlap the singularity (this is a direct consequence of the fact that ψ has at least
one vanishing moment).

3.4.2 Smooth Hölder-0 singularity

We now consider a smooth Hölder-0 singularity model expressed as follows

f(x) = τνU ⊗ gσ(x)

where gσ(x) denotes the normalized Gauss function 1√
2πσ

e−
x2

2σ2 . This model is

commonly used e.g. [Mallat92a, Mallat92b] (or [Blaska94, Blaska97] where it
is used to model the blurring effect of an imaging system). It can easily be
shown that f(x) = τνΦσ(x) where Φσ is the Erf function corresponding to
gσ [Weisstein98], i.e.

Φσ(x) =
1√
2πσ

∫ x

−∞
e−

y2

2σ2 dy

For |x−ν| >> σ, τνΨ(x) is approximately constant (equal to 0 or 1 depending on
sign(x−ν)), therefore γj;k ≈ 0 for a/2j+k−ν >> σ or ν− b/2j−k >> σ. Now,
let us forget (for a short moment) the discretization of the wavelet transform
parameters and recall that Wf (a, b) = f ⊗ ψ̄a;b. In our particular case, we have

Wf (a, b) = τνU ⊗ gσ ⊗ ψ̄a(b)

= gσ ⊗WτνU(a, .)(b)
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Hence, the gaussian convolution operator smoothes, spreads and decreases the
amplitude of the wavelet coefficients of τνU(x) in the neighbourhood of the singu-
larity, i.e. the presence of a singularity introduces a “burst” of non zero wavelet
coefficients and, as σ increases, the maximum wavelet coefficient (in terms of
absolute value) in the neighbourhood of the singularity tends to decreases. For-
mally,

sup
b∈Ω
|WτνΦσ1

(a, b)| > sup
b∈Ω
|WτνΦσ2

(a, b)|, σ1 < σ2 (3.1)

Ω denotes the neighbourhood of ν. If we re-introduce the “multiresolution samp-
ling”, we end up with

γj;k = gσ ⊗WτνU(2
−j, .)[2−jk]

Unfortunately, in this case, the lack of translation invariance [Coifman95] does
not garantee that property (3.1) is preserved by the sampling of the wavelet
coefficients. However, as shown on figure 3.3, it seems reasonnable to consider
that for σ1 << σ2, there will be at least one wavelet coefficient coming from the
sharpest singularity which will be greater than those coming from the smoothest
one, in the neighbourhood of ν.

Another way of interpreting the previous results can be done via the following
theorem (prooved in [Mallat98]).

Theorem 7 A wavelet ψ with a fast decay has n vanishing moments if and only
if there exists θ (a smoothing operator) with a fast decay such that

ψ(x) = (−1)nd
nθ(x)

dxn

As a consequence

Wf(a, b) = an
d

dbn
(f ⊗ θ̄a)(b)

where θa(x) = a−
1
2 θ(x/a). Moreover, ψ has no more than n vanishing moments

if and only if
∫ +∞
−∞ θ(x)dx 6= 0.

Therefore the wavelet coefficents (forgetting again the discretization of a and b)
can be expressed as

Wf(a, b) = an
dn

dbn
(τνU ⊗ gσ ⊗ θ̄a)(b)

= an
dn−1

dbn−1
(τνgσ ⊗ θ̄a)(b)

= anτν
dn−1

dbn−1
λσ;a(b)
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Where λσ;a is a infinitely differentiable low-pass filter, such that

∫ +∞

−∞
(x− x̄)2λσ;a(x)dx

is an increasing function of σ (for a fixed value of a). We therefore have

sup
b∈Ω

dn−1

dbn−1
λσ1;a(b) > sup

b∈Ω

dn−1

dbn−1
λσ2;a(b), σ1 < σ2

Which is equivalent to property (3.1). Re-introducing the discretization occuring
in the multiresolution context gives

γj;k = 2−nj
dn−1

dbn−1
λσ;2j (b)

∣
∣
∣
∣
∣
b=2−jk

and is interpreted as before, i.e. the lack of translation invariance does not garan-
tee that the maximum amplitude wavelet coefficient (over Ω) is sampled.

Figure 3.3 Wavelet transform of some Hölder-0 singularities (Daubechies-8).
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(a) Original signal. (b) Its wavelet decomposition.

3.5 Sharpest singularity selection

In this section, we derive a one-dimensional fusion operator from the results
previously discussed and generalize them to a whole class of functions belonging
to Besov spaces (see §D.3). We then give a formal definition of the windowed
maximum selection rule and discuss its limitations.
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3.5.1 Piecewise regular functions

Requiring that ψ has n vanishing moments allows us to extend the results derived
in the previous section to piecewise polynomial signals. Since

∫+∞
−∞ xkψ(x)dx = 0,

∀k ∈ {0, n− 1}, we have
∫ +∞

−∞

n−1∑

k=0

αkx
kψ(x)dx =

n−1∑

k=0

αk

∫ +∞

−∞
xkψ(x)dx = 0

If the wavelet has a compact support and as soon as ψj;k does not overlap any sin-
gularity, γj;k = 0. This implies that piecewise polynomial signals have the same
kind of behavior than the piecewise constant signals studied in §3.4, i.e. they
generate “bursts” of non zero wavelet coefficients in the neighbourhood of the
singularities. Moreover, as the number of vanishing moments increases, the regu-
larity of the multiresolution (in Yves Meyer sense [Meyer90]) increases and makes
the wavelet basis suitable for studying functions belonging to Besov spaces which
behave roughly like piecewise polynomial signals: they are efficiently character-
ized by a few non-zero wavelet coefficients [Meyer94]. In other words, an or-
thogonal wavelet basis provides an optimal “point of view” in which the relevant
information (sharp variations) can be easily descriminated from the rest2. This
assertion is the basis of David Donoho’s work (for denoising purpose, see 3.9.1)
and justifies the relevancy of using orthogonal wavelet decompositions for image
fusion: the “relevant information” is better seen in an orthogonal wavelet basis
than in any others.

3.5.2 Windowed maximum operator

Property (3.1) and the assumption that it is statisfied in a multiresolution context
allow us to design a simple fusion operator which aims at selecting the sharpest
singularity at a given “location”. Basically, it consists in studying the absolute
values of the wavelet coefficients over a given window and to keep the wavelet
coefficient which corresponds to the highest absolute value within the window.
Formally,

γ
(f)
j;k =







γ
(1)
j;k if maxl∈Ω |γ(1)j;l | ≥ maxl∈Ω |γ(2)j;l |
γ
(2)
j;k otherwise

Ω denotes the window. Since the blurring of a Hölder-0 singularity by a gaus-
sian operator implies a decreasing of the maximum wavelet coefficients in the
neighbourhood of that singularity, the windowed maximum operator performs a
singularity selection based on their sharpeness. Moreover, the fusion does not

2We translate Yves Meyer ([Meyer94], fourth chapter, p. 183): “Wavelets allows to represent
very efficiently signals which are relatively regular and which contain isolated singularities.

These signals belong to B
1

p

p,p, ∀p > 0.”
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take into account the regular parts of the signal, which are “coded” in the dilated
and translated wavelets.

3.5.3 Limitations

In the previous sections we have implicity assumed that the singularities con-
tained in the signal are isolated, i.e. sufficiently far away from each other. If we
consider some functions with non isolated singularities like x−1 sin(1/x) [Farge93]
(see figure 3.4 (a)) or the (globally fractal) Lebesgue-Weierstrass function [Farge93,
Lamoureux94, Meyer94] (see figure 3.4 (b)),

∞∑

k=1

1

2k
sin 2n

2

x

which is continuous but nowhere differentiable, the windowed maximum selection
rule is likely to give improper or uncontrolled results. However, the study of the
relationships between wavelets (not necessarily orthogonal) and (multi)fractal
signals is beyond the scope of this thesis, the reader is (notably) sent to [Farge93,
Mallat92a, Hwang93, Mallat98, Meyer94] for more details. Other limitations due
to the multisensor origins of the data are to be discussed in §3.7.3.

Figure 3.4 Examples of signals with non-isolated singularities.
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(b) The Weierstrass function.

3.6 Bi(multi)dimensional wavelet transform

This section generalizes the notion of wavelet transform and orthogonal multires-
olution analysis in two dimensions. We first (briefly) introduce the spaces L2(Rn)
and Lp(Rn), then defines the continuous wavelet transform on L2(R2) and build
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orthogonal multiresolution analysis of L2(R2) by means of separable wavelet ba-
sis. Obviously, these extensions are necessary for being able to use the wavelet
analysis in an image processing context.

3.6.1 Spaces: L2(R2), L2(Rn) and Lp(Rn)

The spaces L2(R2), L2(Rn) and Lp(Rn) are “natural extensions” of L2(R) (space
of square integrable function of one variable, see §2.1). L2(R2), the space of
square integrable functions of two variables, is defined as

L2(R2) =
{

f/
∫ +∞

−∞

∫ +∞

−∞
|f(x, y)|2dxdy <∞

}

, f, g ∈ L2(R2)

provided the following scalar product and the following norm

< f, g >L2(R2)=
∫ +∞

−∞

∫ +∞

−∞
f(x, y)g∗(x, y)dxdy, ‖f‖2L2(R2) =< f, f >L2(R2)

Obviously, the more general space L2(Rn) is defined as

L2(Rn) =
{

f/
∫

Rn
|f(~z)|2d~z <∞

}

, ~z ∈ Rn (3.2)

with
< f, g >L2(Rn)=

∫

Rn
f(~z)g∗(~z)d~z, ‖f‖2L2(Rn) =< f, f >L2(Rn)

Finally, Lp(Rn) is defined (for 1 ≤ p ≤ ∞) by replacing 2 by p in equation (3.2)
and the norm operator becomes (with the usual modification for p =∞)

‖f‖Lp(Rn) =
(∫

Rn
|f(~z)|pd~z

) 1
p

The concepts of wavelet transform and multiresolution analysis can be easily
generalized for L2(Rn) (see the next subsection for L2(R2)), but the generalization
for Lp(Rn) is trickier3, the reader is (notably) sent to [Meyer90].

3.6.2 Continuous wavelet transform on L2(R2)

The continuous wavelet transform of a function f of two variables belonging to
L2(R2) is a staightforward generalization of the one-dimensional case presented
in §2.3. Formally, given a wavelet Ψ

Wf (a, b, b
′) =< f,Ψa;b;b′ >L2(R2), Ψa;b;b′(x, y) =

1

a
Ψ

(

x− b

a
,
y − b′

a

)

The reader is (notably) sent to [Mallat98] for more details (including the wavelet
transform using wavelets with different spatial orientations).

3In that general case, we have to deal with some paradoxal behaviors e.g. if we directly use
an orthogonal decomposition of the form f(x) =

∑

j

∑

k < f, ψj;k > ψj;k(x) (ψ is supposed to
have at least one vanishing moment) on f(x) = 1 (f ∈ L∞(R)) we end up with < f, ψj;k >=
0, ∀j, k ∈ Z2 and hence with 1 = 0! See [Meyer90] for more details.
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3.6.3 Multiresolution analysis of L2(R2)

A simple way of building an orthogonal multiresolution of L2(R2) consists in
using separable wavelet basis which is done via the following theorem (notably
prooved in [Mallat98]).

Theorem 8 (Separable multiresolution) Let φ and ψ (respectively) be the
scaling function and the wavelet generating an orthogonal multiresolution on
L2(R) and define

Ψ(1)(x, y) = φ(x)ψ(y), Ψ(2)(x, y) = ψ(x)φ(y), Ψ(3)(x, y) = ψ(x)ψ(y)

For α ∈ {1, 3}
Ψ
(α)
j;k;k′ = 2jΨ(α)(2jx− k, 2jy − k′)

Then the families {Ψ(α)
j;k;k′}α∈{1,3}, k,k′∈Z2 and {Ψ(α)

j,k,k′}α∈{1,3}, j;k;k′∈Z3 (respectively)
form orthogonal basis of W 2

j and L2(R2).

The wavelet transform of an image is then organized as shown on figure 3.5.
For example, the coefficients γ

(1)
j;k;k′ =< f,Ψ

(1)
j;k;k′ > correspond to the one di-

mensional scalar product of f with φj;k according to the rows and to the scalar
product of f with ψj;k′ according to the columns of the image. As discussed in

[Bourges94, Starck92]: γ
(1)
j;k;k′ corresponds to the horizontal low frequencies and

to the vertical high frequencies (vertical details) of µj+1;k;k′ =< f,Φj+1,k,k′ >

(Φ(x, y) = φ(x)φ(y)), while γ
(2)
j;k;k′ and γ

(3)
j,k,k′ respectively correspond to its hori-

zontal high/vertical low and horizontal high/vertical high frequencies (horizontal
and diagonal details). The algorithm for computing the wavelet coefficients of
an image becomes a straightforward extension of the decimated filter banks al-
gorithm used in one dimension (see §2.6.1). Basically, it consists in applying
the one dimensional algorithm on the rows followed by the same operation on
the columns (the order does not matter) for each scale, i.e. for computing the
wavelet coefficients at scale j from the scaling coefficients at scale j + 1. Note
that it is possible to create non-separable wavelet basis of L2(R2) [Kovac̆ević92],
but in spite of their interesting properties e.g. orthogonal, compactly supported
and symetric wavelets (which is not possible in the one dimensional case), they
are not very used in practice. Figure 3.6 shows the wavelet decompositions of
some images.

3.7 Wavelet based image fusion

3.7.1 Extension of the results derived in §3.4

The purpose of this subsection is to generalize the results derived in §3.4 (for
the one dimensional case) in two dimensions. This will allow us to define the
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Figure 3.5 Organization of a two-dimensional wavelet decomposition.

. . .. . .

~z = (x y)T

Ψ(1)(~z) =

φ(x)ψ(y)

Ψ(3)(~z) =

ψ(x)ψ(y)

Ψ(2)(~z) =

ψ(x)φ(y)

“Low-High”

“High-Low”

“High-High”

. . .
Φ

fusion operator in the next subsection. As in the one-dimensional case, if the
analysed function is singular at (ν ν ′)T , in the direction of the wavelet, the cor-
responding coefficients are going to be large (in the neighbourhood of (ν ν ′)T ).
This is illustrated by using theorem 7 (page 55) which implies that each wavelets

({ψ(α)}α=1,2,3) is the nth-order partial derivative of a smoothing operator, i.e.

Ψ(1)(x, y) = (−1)n ∂
n

∂yn
Θ(1), Ψ(2)(x, y) = (−1)n ∂

n

∂xn
Θ(2)

and

Ψ(3)(x, y) = (−1)2n ∂
n

∂xn
∂n

∂yn
Θ(3)

where Θ(1)(x, y) = φ(x)θ(y), Θ(2)(x, y) = θ(x)φ(y) and Θ(3)(x, y) = θ(x)θ(y).
This directly implies that the wavelet coefficients correspond to the partial deri-
vatives of f smoothed by Θ(α) (properly scaled).

W(1)
f = an

∂n

∂b′n
(f ⊗ Θ̄(1)

a )(b, b′), W(2)
f = an

∂n

∂bn
(f ⊗ Θ̄(2)

a )(b, b′)

and

W(3)
f = a2n

∂n

∂bn
∂n

∂b′n
(f ⊗ Θ̄(3)

a )(b, b′)

Hence, the more f is singular in the wavelet direction, the more supΩ |W(α)
f (a, b, b′)|

is large (Ω denotes the two-dimensional neighbourhood of (ν ν ′)T ). Considering
a two-dimensional gaussian operator of the form (2πσ2)−1e(x

2+y2)(2σ2)−1
and using

the fact that W(α)
f (a, b, b′) = f ⊗ ψ̄(α)a (b, b′) leads to

W(α)
f⊗gσ

= f ⊗ gσ ⊗ Ψ̄(α)
a (b, b′)

= gσ ⊗W(α)
f (a, b, b′)
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Figure 3.6 Wavelet decompositions of some images (Daubechies-8).

(a) “Lenna”. (b) Its wavelet decomposition.

(c) A disk. (d) Its wavelet decomposition.
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Therefore, the effect of a gaussian smoothing operator is to decrease (at least)
the maximum amplitude coefficient (in Ω), to spread and to smooth the wavelet
coefficients. As in one dimension we end up with

sup
b,b′∈Ω

|W(1)
f⊗gσ1

(a, b, b′)| > sup
b,b′∈Ω

|W(1)
f⊗gσ2

(a, b, b′)|, σ1 < σ2 (3.3)

However, the lack of translation invariance, introduced by the sampling of the
translation parameters (b = 2−jk and b′ = 2−jk′) implies that the maximum
absolute value wavelet coefficient on Ω is not necessarily sampled. Generalization
to piecewise regular images (or geometrical images [Meyer94]) done using the
same arguments as in §3.4.

3.7.2 Area based maximum selection

Since the presence of a singularity is reponsible for a “burst” of non zeros wavelet
coefficients, we propose (as in [Li95b]) to realize the fusion using an area-based
maximum selection. Basically, it consists in studying the absolute value of the
wavelet coefficients within a square window4 centered on the coefficient of in-
terest (in both images) and to choose the one which corresponds to the highest
maximum value in this area. This operator behaves correctly, according to what
we want to select i.e. sharp transitions. Moreover, it is not sensitive to (small)
imperfections (which are likely to occur) in the registration process. Since we
study the neighbourhood of a given wavelet coefficient, it is not required that
two singularities (having the same origins in the “outside-world”) have to be
perfectly aligned (however, this assertion should be an assumption because the
lack of translation invariance does not allow to interpret the wavelet coefficients
easily).
The relevancy of this operator for the multifocus problem is obvious since the two
images have the same nature: the presence of a local blurring decreases the am-
plitude of the wavelet coefficients in the blurred area. Concerning the multisensor
problem, its relevancy is less obvious because (as already discuss in §3.2.2) the two
images are resulting from completly different physical phenomenons. However, if
an object has a sharper frontier in one of the two images, then its frontier will be
the one chosen and since its regular parts are “coded” in the dilated/translated
wavelet functions, we perform a kind of object selection, which is what we want
(see figure 3.7).

3.7.3 Limitations

In spite of the interesting properties of the operator, some problems may crop up.
For example, if an object is not “physically homogeneous”: consider a bar heaten

4The size of the window has been empirically set to 3 × 3. Moreover, since the image is
subsampled from 2j to 2j−1, the dimensions of the window do not need to be adapted for taking
into account that the scaling coefficients are more and more smoothed.
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up on only one side (say the right side), the resulting thermal image will be bright
on the hot side and relatively dark on the cool side (the left one). Now, consider
that the same bar is lighted up from behind: this gives a visible image which
corresponds to a black rectangle on a bright background. On a fusion point of
view, these two images are not compatible: on one hand, if the hot side of the bar
has a sharper frontier in the thermal image than in the visible one, it will be taken
from the thermal image, on the other hand the other (left/cool) side will be taken
from the visible image. Therefore, in that particular case, we have not performed
an object selection but built an incomprehensible composite object. Figure 3.7
((d), (e) & (f)) illustrates this problem. However, extensive experimental tests
have shown that this kind of scenario rarely occurs in practice.
As in the one dimensional case (§3.5.3), we have implicitly assumed that the
singularities present in an image are isolated, the fusion operator may fail to fuse
correctly some objects with a fractal frontier or may behave improperly if some
objects have a fractal texture (however, do we know what the correct result is?).

Figure 3.7 Example of correct and failed object selection.

(c) Object selection.

(d) Visible image. (e) Thermal image. (f) Objects merging.

Renaud Sirdey 64



3.8 Experimental results 1997/98

3.8 Experimental results

3.8.1 Multifocus image fusion

Figure 3.8 shows the results of the fusion operator applied on both the “can”
and the “clocks” pairs of images. On a visual point of view, the resulting images
seem reasonnable, i.e. the well-focused objects present in both images are present
without any (visual) degradadation in the fused images. In the multifocus case,
we are able to have a quantitative estimate of the algorithm performances. As
proposed in [Li95b], a reference image can be created by manual cut and paste5

and the performances of the algorithm are evaluated using the following measure

ρ =

√
√
√
√

1

N2

∑

i,j

(f ⋆[i, j]− f [i, j])2

where f ⋆ denotes the manually fused image. The fusion has been performed
using a Daubechies wavelet with 8 null moments and a popularity filter. The
values lying outside [0, 255] have been clipped. In the “can” case, the per-
formance measure is equal to 3.5175, while in the “clocks” case, we have ρ =
3.7077. These results are roughly equivalent to those provided in [Li95b]. Mor-
ever, extensive experimental tests, involving different orthogonal and biorthogo-
nal wavelets [Antonini92, Cohen92a, Daubechies88, Beylkin91, Vetterli92], have
shown that the performances of the fusion algorithm are not affected by the
wavelet, as soon as the multiresolution analysis is sufficiently regular.

3.8.2 Multisensor image fusion

Figure 3.9, 3.10 and 3.11 present some experimental results in the multisensor
case. The NIR/FIR pairs have been taken from the sequence and correspond to
the frames {050, 053}, {100, 103}, {200, 203}, {300, 303}, . . . , {600, 603}. This
set of images is representative of the kind of scenari available within the sequence.
As shown on the three figures, the results given by the fusion algorithm are rea-
sonnable: it gives (most of the time) an image which integrates the relevant
information available in the two source images. The tests have been performed
using a Daubechies-8 wavelet, the area-based maximum selection and a popularity
filter [Li95b]. In what follows, we analyse briefly the results.

Figure 3.9

The object selection is well-illustrated on many frames. For example, the fused
image, corresponding to {050, 053}, contains the bottom-right car and the house
window coming from the NIR image while the trees and the post have been taken

5However, this manual cut and paste is tricky to do, even for a human operator.
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Figure 3.8 Experimental results on multifocus data.

(c) Fusion (“can”).

(f) Fusion (“clocks”).
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from the FIR one ; the bottom-right part of the road is coming from the NIR
image as well. This object selection has been performed for all the frames in
this figure (e.g. the road marks and the bareer of the house in {200, 203}, the
“mysterious square” in the three frames, . . . ). Moreover, the fused images are
easily understandable, in comparison to the raw FIR ones, and contain more
information than the raw NIR ones.

Figure 3.10

On this figure, the comments are roughly the same: the object selection has been
correctly performed (e.g. the bin in {300, 303}, the bareer, the house and the
trees in {350, 353}, the road sign in {400, 403}, . . . ). As in figure 3.9, the fusion
gives reasonnable results and leads to understandable images which takes into
account the relevant information coming from both the NIR and the FIR images.

Figure 3.11

Figure 3.11 provides two interesting examples. For the first pair ({500, 503}),
the NIR image contains no useful information almost everywhere in its bottom
part, while the FIR image shows the border of the road (useful, when driving at
night!) and a sort of house. However, the frontier between the sky and the trees
is better defined in the NIR image than in the FIR one. The resulting image
is a good fusion example: the bottom part of the fused image contains all the
useful information available in the FIR image, and the frontier between the sky
and the tree has been taken from the NIR image. The pair {600, 603} exhibits
some artifacts in the top part, we think that this is mainly a consequence of a
“bar”-like problem (see §3.7.3). Due to the sunset, the trees in the NIR image
are dark on a bright background (lighted up from behind). Moreover, they have
been “eroded” because of the over-exposition. The FIR image, as a thermal one,
is not subject to this problem. Hence, the two images are incompatible and a
composite object is built by the fusion process. However, this situation is not
likely to occur when driving at night (not at sunset) and just concerns the top
part of the image (which is not very important when driving).

Experimental tests have also shown (as in the multifocus case) that the results
are not affected by the wavelet as soon as it has a sufficient number of vanishing
moments. For example, a Daubechies wavelet with only 2 vanishing moments
leads to a pertubated fused image.

3.9 Denoising in the wavelet space

Since the beginning of the chapter, we have not spoken about noise: it does not
seem to disturb the fusion process, in the case of our data which are of good
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Figure 3.9 Experimental results on multisensor data.

(a) NIR-050. (b) FIR-053.

(d) NIR-100. (e) FIR-103.

(g) NIR-200. (h) FIR-203.
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Figure 3.10 More experimental results on multisensor data.

(a) NIR-300. (b) FIR-303.

(d) NIR-350. (e) FIR-353.

(g) NIR-400. (h) FIR-403.
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Figure 3.11 Still more experimental results on multisensor data.

(a) NIR-500. (b) FIR-503.

(d) NIR-600. (e) FIR-603.
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quality i.e. nearly noise-free. This section is devoted to signal/image fusion in
a noisy environment. We first introduce the well-known denoising algorithm(s)
proposed by David Donoho and al [Donoho91b, Donoho92, Donoho94, Donoho95],
then study the feasibility of image fusion in a noisy environment and finally, we
present a few other methods of denoising.

3.9.1 Denoising via wavelet shrinkage

The purpose of denoising is to estimate a real function f from a set of corrupted
measurements. A simple statistical model consists in considering that the samples
are corrupted by an additive gaussian white noise i.e.

Gk = fk + σBk, Bk follows N (0, 1) iid, σ ∈ R∗+

In a orthogonal basis of l2({0, N − 1}) e.g. {θk}k∈{0,N−1}, the expansion of a
gaussian white noise remains a gaussian white noise [Carré98, Mallat98] (in all
this section, < ., . > and ‖.‖ should be understood in a l2({0, N − 1}) sense).
Proof:

E[< B, θk >] =
N−1∑

l=0

E[Bl]θ
∗
k[l] = 0

and

COV [< B, θk >,< B, θl >] = E[< B, θk >< B, θl >
∗]

=
N−1∑

m=0

N∑

n=0

E[BkBl]
︸ ︷︷ ︸

δm,n

θ∗k[m]θl[n]

=
N−1∑

m=0

θ∗k[m]θl[m] =< θk, θl >
∗= δk,l

Since a linear combination of iid gaussian random variables gives a gaussian ran-
dom variable, and since the abscence of correlation COV (X, Y ) = 0, X 6= Y
implies (for gaussian random variables) the independance of the two variables,
we have < B, θk > follows N (0, 1) iid. In what follows, we present the two main
philosophies for building some estimates of f , namely: coefficients attenuation
(“implemented” via a soft thresholding) and coefficients selection (hard threshold-
ing). The next two subsubsections summarize the ideas developed in [Mallat98].

Coefficients attenuation

From the noisy signal G, we contruct an estimator of the form

F̃ =
N−1∑

k=0

< G, θk > λ[k]θk
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Here, we focus on non-linear estimators that depends on the realisation of G. We
now consider the mean square error6

E[‖f − F̃‖2] =
N−1∑

k=0

E[| < f, θk > − < G, θk > λ[k]|2]
︸ ︷︷ ︸

ε

Since < G, θk >=< f, θk > +σ < B, θk >, we have

ε = E[| < f, θk > (1− λ[k])− σ < B, θk > λ[k]|2]
= | < f, θk > |2(1− λ[k])2 + σ2λ[k]2

because E[< B, θk >] = 0 and E[| < B, θk > |2] = 1. By solving ∂ε
∂λ[k]

= 0, one
derives that ε is a minimum for

λ[k] =
| < f, θk > |2

| < f, θk > |2 + σ2
(3.4)

leading to the mean square error

E[‖f − F̃‖2] =
N−1∑

k=0

| < f, θk > |2σ2
| < f, θk > |2 + σ2

Note that equation (3.4) can be seen as a “generalized” Wiener filter. If the
basis functions {θ}k∈{0,N−1} were the complex exponentials of Fourier analysis we
would end up with

λ[k] =
1

1 + σ2

|f̂ [k]|2

which is precisely the expression of the Wiener filter [Gonzales92] for a point
spread function equal to δ.

Coefficients selection

A coefficient selection is performed by requiring that λ[k] takes binary values,
i.e. the estimator consists in selecting a subset of the noisy coefficients of G. In
that case, it is obvious that the mean square error (still equal to: E[‖f − F̃‖2] =
| < f, θk > |2(1− λ[k])2 + σ2λ[k]2) is minimized by an operator of the form

λ[k] =

{

1 if | < f, θk > |2 ≥ σ2

0 otherwise

6Recall that an orthonormal basis of an abstract Hilbert space is a particular case of a Riesz
basis with A = B = 1 [Daubechies92], therefore ‖f‖2 =

∑

k | < f, ek > |2 (see definition 10,
page 123, as well).
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The mean square error produced by this ideal selection procedure

E[‖f − F̃‖2] =
N−1∑

k=0

min(| < f, θk > |2, σ2) (3.5)

remains of the same order than the one introduced by the attenuation opera-
tor [Mallat98]. Obviously, because of our lack of knowledge about < f, θk >,
the ideal coefficients attenuation and selection cannot be implemented. However,
since the work of David Donoho (see notably [Donoho94]), it is known that the
performances of some thresholding estimators (applied on the empirical wavelet
decomposition) are closed to the ones of the ideal procedures previously discussed.

Denoising in orthogonal wavelet basis

We have not yet spoken about denoising in orthogonal wavelet basis. Basically,
the choice of the basis in which a non-linear operator is applied is crucial. The
best (non-linear) approximation of a function f (withM vectors) in an orthogonal
basis is given by

fM =
∑

|<f,θk>|≥σ
< f, θk > θk

while the approximation error is equal to

‖f − fM‖2 =
∑

|<f,θk>|<σ
| < f, θk > |2

For the ideal selection procedure previously dicussed, the mean square error
(equation (3.5)) can therefore be written as

E[‖f − F̃‖2] = ‖f − fM‖2 +Mσ2

hence, the mean square error is small only if the approximation error and Mσ2

are both small, i.e. we want a basis in which the function f is coded by a few
large coefficients which characterize it relevantly. This, for example, eliminates
the complex exponential basis for estimating a function containing some singula-
rities: this type of signals generates non-neglectible coefficients in all the Fourier
spectrum. The convenience of using orthogonal wavelet basis comes from the
fact that a r-regularly (in the sense defined by Yves Meyer [Meyer90]) orthogo-
nal wavelet basis provides unconditionnal basis for a wide range of smoothness
spaces [Meyer90] (namely: Hölder, Sobolev, Besov spaces, . . . ). For example,
piecewise regular functions, i.e. functions containing isolated singularities (be-
longing to the Besov space(s)), are efficiently approximated with a few large
coefficients [Donoho91a, Mallat98], see §D.3. The only a priori knowledge about
the desired result is the order of a given Besov-norm and the implementation of
the algorithm does not depend on its parameters (α, p, q) [Meyer94].
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The last problem deals with the necessity of approximating the ideal operators
and estimating their parameters (e.g. σ). For example, a hard-thresholding op-
erator

F̃ =
N−1∑

k=0

Λ(< G, θk >)θk, Λ(x) =

{

x if |x| ≥ T
0 otherwise

(3.6)

with7 T = σ
√
logN , produces a mean square error which remains within a

2 logN factor of the ideal error and is asymptotically optimal in a minimax
sense [Donoho92]. The reader is notably sent to [Mallat98, Donoho95] for some
discussions on the operators (e.g. hard/soft thresholding) and the threshold choices.

3.9.2 Image fusion in a noisy environment

Using the tools previously discussed, it becomes relatively straightforward to
design a fusion algorithm which takes into account the presence of noise in the
image. Basically it consist in applying simultaneously the denoising algorithm
and the area-based maximum selection.

Denoising algorithm

The denoising algorithm, as presented by David Donoho, works as follows. It is
first required to apply a discrete orthogonal wavelet transform (possibly on the
interval [Cohen92b, Cohen93, Mallat98]) in order to obtain the empirical wavelet
coefficients. Then, we need to estimate σ using the median-based estimator
discussed in §3.9.1 and apply the soft/hard (see equation (3.6)) thresholding
non-linearity:

Λ(x) =







x− T if x ≥ T
x+ T if x ≤ T
0 otherwise

Finally, we get the estimation of f by applying an inverse transform algorithm on
the thresholded empirical coefficients. Some experimental results are (notably)
available in [Mallat98]. The algorithm can easily be extended to images (again
via separable basis) but it is (by definition) likely to suppress some interesting
information on textural parts (especially if they cannot be considered as being
piecewise regular e.g. fractal textures often present in natural scenes).

7In practice, the noise variance is not known and need to be estimated. This is done by
using σ̃ = MED/.6745 where MED denotes the median of the absolute values of the empirical

wavelet coefficients at the finest scale (recall that
∫ +.6745σ

−.6745σ
gσ(x)dx = .5 [Daintith89]). When f

is piecewise smooth, it generates only a small number of non vanishing coefficients at the finest
scale (the wavelet overlaps the singularities for only a few values of the translation parameter)
and the median is not very sensitive to a few outliers.
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Fusion algorithm

For saving computational time it, is not recommended to apply the denoising
algorithm before applying the fusion scheme i.e. consider it as a preprocessing
task, because it will require two superfluous wavelet transform/inverse wavelet
transform operations. It is therefore better to merge the denoising and the fusion
operators in a single one (discussed just after). The complete algorithm works
as follows: we first compute the empirical coefficients of the images to be fused,
then estimate the noise variance in each ones and apply the modified area-based
maximum selection operator, defined as follows

γ
(f)
j;k =







γ
(1)
j;k if maxl∈Ω |Λ(1)(γ(1)j;l )| ≥ maxl∈Ω |Λ(2)(γ(2)j;l )|
γ
(2)
j;k otherwise

where Λ(1) and Λ(2) denote the hard/soft thresholding non-linearities associated
with each image i.e. dependant on σ̃(1) and σ̃(2). Taking the inverse transform
gives the (estimated) fused image. Experimental results are not available but
since the operator has been built on a strong theoretical background (which has
been extensively tested in the litterature), we believe that it is likely to give
reasonable results.

3.9.3 Other wavelet-based denoising methods

The purpose of this subsection is to give a few pointers on other works which
also use the wavelet transform for denoising purpose. Most of them are based on
undecimated transformations and use their redundancy for producing better ap-
proximations of a given function. The translation invariant denoising of Ronald
Coifman [Coifman95] consists in applying a threshold-based denoising for differ-
ent shifts of the original signal. Some artifacts (e.g. Gibbs effect in the neighbour-
hood of the singularities) are then attenuated by averaging the different results.
Philippe Carré and al [Carré98] also introduces a translation invariant denoising
based on the algorithme à trous. Other authors [Mallat92a, Mallat92b, Lu93]
propose some denoising methods based on the wavelet maxima representation
(discussed in the next chapter). Note that some articles (notably [Carré98]) deal
with the removal of colored noise problem.
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Chapter 4

Feature-based image fusion

Introduction

Multiscale edges have been introduced in order to deal with the problem of noise
while performing a contour extraction task, e.g. [Bergholm87]. A popular strategy
consists in using a detection operator which is the first or second order of a low-
pass filter (e.g. gaussian filter [Canny86] or the exponential filter [Deriche87]) in
order to reduce the noise and carry out the edge detection. Obviously, this method
have a fundamental disadvantage: the “good” localization and “good” detection
criteria [Canny86] (see B.1.1) are dual and cannot be simultaneously arbitrary
small. In order to overcome this limitation, Fredrik Berghlom [Bergholm87] has
proposed a procedure, known as “edge focusing”, which consists in computing the
output of the Canny detector for different values of σ (i.e. scales) and detecting
the edges using a coarse-to-fine tracking.
This philosophy has been retained for designing feature-based image represen-
tations1, using “classical” multiscale decompositions (e.g [Hummel89]) or the
wavelet transform [Mallat91, Mallat92a, Mallat92b]. These representations al-
low to reconstruct an approximation of the original image from its multiscale
edges (the uniqueness and stability of these representations is notably adressed
in [Berman91, Berman92, Berman93, Meyer94]). Because of this reconstruction,
it has been foreseen by Stéphane Mallat [Mallat92b] that many image processing
tasks could be implemented using edge-based algorithms.
The purpose of this chapter is to study the feasibility of a feature-based image
fusion procedure using the wavelet maxima representation. The chapter is orga-
nized as follows: we first introduce the multiscale edge detection procedure, then
present the reconstruction algorithm, and discuss the possible design of a fusion
operator in this context. The main references are [Mallat92a, Mallat92b, Lu93].

1Known as adaptive quasi-linear representations (AQLR).
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4.1 Multiscale edges

In this section, we only focus on the wavelet maxima representation. Informa-
tion about the zero-crossing representation are available (notably) in [Mallat91].
Theorem 7 (page 55) implies that a wavelet having one vanishing moment corre-
sponds to the first order derivative of a smoothing operator. Formally,

ψ(x) = −dθ
dx

The dyadic wavelet transform (the use of a dyadic wavelet transform is motivated
by its translation invariance and its redundancy) can therefore be interpreted as

Wf (2
j, b) = 2j

d

db
(f ⊗ θ̄2j )(b)

As j increases, Wf (2
j, b) is smoother. For example, if θ is a Gauss function,

one ends up with a multiscale Canny operator. Under this condition the dyadic
wavelet transform provides a multiscale gradient from which the points of sharp
variation can be extracted.

4.1.1 Quadratic spline wavelet

For being able to use the algorithme à trous (see §2.3.3), it is required that

φ̂(ξ) = ĥ(ξ/2)φ̂(ξ/2) and ψ̂(ξ) = ĝ(ξ/2)φ̂(ξ/2)

where ĥ(ξ) and ĝ(ξ) are the Fourier transform of two discrete filters (the same

constraints should be satisfied by ˆ̃φ(ξ) and ˆ̃ψ(ξ)). Since ψ should be the first order
of a smoothing operator, ψ̂(ξ) must have a zero of order 1 at ξ = 0. Because
φ̂(0) = 0 the constraint is moved onto ĝ(ξ). Moreover, ĥ(ξ) is chosen such that
ψ(x) is antisymetrical, is as regular as possible and has a small compact support.
Stéphane Mallat [Mallat92b] has proposed the following family of filters

ĥ(ξ) =
ˆ̃
h(ξ) = e

iξ

2 cos(ξ/2)2n+1, ĝ(ξ) = 4ie
iξ

2 sin(ξ/2) and ˆ̃g(ξ) =
1− |ĥ(ξ)|2

ĝ(ξ)

This leads to the filter coefficients, available in [Mallat92b] (table 1, page 728),
and to the following scaling function, wavelet and smoothing operator

φ̂(ξ) = sinc(ξ/2)2n+1, ψ̂(ξ) = iξsinc(ξ/4)2n+2 and θ̂(ξ) = sinc(ξ/4)2n+2

note that sincx = sinx
x
. Choosing 2n + 1 = 3 leads to a scaling function and a

smoothing operator which are respectively a cubic and a quadratic spline. Figu-
re 4.1 shows the modulus of their Fourier transforms.
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Figure 4.1 Quadratic spline wavelet.
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4.1.2 Algorithme à trous in two dimensions

In two dimensions, the dyadic wavelet transform is (most of the time) defined by
using two spatially oriented separable wavelets [Mallat98]

Ψ(1)(x, y) = ψ(x)φ(y) = − ∂

∂x
Θ(1), Ψ(2)(x, y) = φ(x)ψ(y) = − ∂

∂y
Θ(2) (4.1)

and a separable scaling function Φ(x, y) = φ(x)φ(y). The resulting algorithm be-
comes (roughly) a straightforward extension of the one dimensional case (§2.3.3)
which consists in iteratively applying separable filters on the scaling coefficients
for obtaining the scaling and wavelet coefficients at the next scale. As usual, for
practical images, the first coefficients are given by the grey-scale values of the
original image (see 2.3.4). Figure 4.2 shows the dyadic wavelet transform of the
“lenna” image, computed using the scaling function/wavelet pair presented in
the previous subsection. More details are available in [Mallat92b, Mallat98].

4.1.3 Contours extraction

From the definition of Ψ(1) and Ψ(2), it directly follows that the wavelet coeffi-
cients are proportionnal to the gradient of the image smoothed by Θ2j (Θ(1) ≈
Θ(2) [Mallat92b]) i.e.




W(1)

f (2j, b, b′)

W(2)
f (2j, b, b′)



 =

(

2j ∂
∂b
(f ⊗ Θ̄2j )(b, b′)

2j ∂
∂b′
(f ⊗ Θ̄2j)(b, b′)

)

= 2j ~∇f ⊗ Θ̄2j (b, b′)

This information can therefore be used (as in a classical edge detector) for ex-
tracting the multiscale edges. The modulus of the gradient is proportionnal to
the modulus of the wavelet coefficients

|~∇f ⊗ Θ̄2j (b, b′)| ∝
√

|W(1)
f (2j, b, b′)|2 + |W(2)

f (2j, b, b′)|2
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Figure 4.2 Beginning of a two-dimensional dyadic wavelet transform.

(g) Scaling coeff. (h) Wave. co. (Ψ(1)). (i) Wave. co. (Ψ(2)).
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and its orientation is given by

α(2j, b, b′) = tan−1
W(2)

f (2j , b, b′)

W(1)
f (2j , b, b′)

The detection consists in two main steps: it is first necessary to extract the local
maxima of the gradient norm in the gradient direction and secondly, to suppress
the non-significant local maxima via a thresholding operation. This last operation
in often implemented using an hysteresis thresholding (more details are available
in [Deriche] and in §B.1 as well).
The set of values,

Ω = {{(bk b′k)T , (W(1)
f (2j, bk, b

′
k) W(2)

f (2j , bk, b
′
k))

T}k=1,···,Nj
}j∈Z

where (bk b
′
k)
T denotes the coordinates of a local maximum, is called the wavelet

maxima representation of the image. For a digital N × N image, the wavelet
maxima representation obviously becomes

Ω = {{(ik i′k)T , (W(1)
f (2j, ik, i

′
k) W(2)

f (2j, ik, i
′
k))

T}k=1,···,Nj
}j=0,···,log2N

where (ik i
′
k)
T is an integer-valued vector. See figure 4.3.

4.2 Reconstruction from local maxima

As pointed in (notably) [Berman91, Meyer94], the wavelet maxima representation
does not characterize uniquely a given function f . However, two functions having
the same local maxima differ mainly and only slightly on their high-frequency
content, which makes the reconstruction suitable for practical purposes [Mallat98,
Meyer94]. Here, we shortly present the alternate projection algorithm, introduced
in Stéphane Mallat’s articles. However, other alternative algorithms have been
proposed in [Carmora, Cvetković95]. We restrict ourselves to the one dimensional
case, since the two dimensional algorithm is a straightforward extension and is
fully presented in [Mallat92b].

4.2.1 The alternate projection algorithm

Basically, our goal is to find a sequence of functions {gj}j∈Z such that: it is the
wavelet transform of a function of L2(R), it has the same wavelet maxima as
Wf and not more. As pointed in [Mallat92b], this last condition (not more) is
not convex and cannot be implemented easily, thus it is relaxed and replaced by
requiring the following Sobolev norm to be minimum

‖{gj}j∈Z‖2K =
∑

j

‖gj‖2L2(R) + 22j
∥
∥
∥
∥
∥

dgj
dx

∥
∥
∥
∥
∥

2

L2(R)
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Figure 4.3 Multiscale edges extracted from the “lenna” image.

(g) Gradient norm. (h) Local maxima. (i) Hysteresis thresh.
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The constraint on ‖dgj/dx‖2L2(R) allows to control the appearance of spurious

maxima and the multiplication by 2j express the fact that gj should be smoother
as j increases. Let K be the set of all the sequences {gj}j∈Z such that ‖{gj}j∈Z‖K
is finite. Let V denote the space of all the sequences {gj}j∈Z such that their are
the wavelet transform of a function belonging to L2(R) i.e. such that the sequence
{gj}j∈Z satisfies the reproducing kernel equation (equation (2.10) or (2.11)). Let
Γ be the set of sequences {gk}j∈Z such that for all j and for all maxima position
xk we have

Wf(2
j, xk) = gj(xk)

The alternate projection algorithm converges to a sequence {g⋆j}j∈Z , lying in
Λ = V ∩Γ, by alternatively project the current sequence onto V and Γ. Starting
from the initial guess {gj}(0)j∈Z ∈ V (in general gj(x) = 0, ∀j), the algorithm is
simply expressed as

{gj}(k+1)j∈Z = PV (PΓ({gj}(k)j∈Z))
where PV and PΓ are respectively the orthogonal projectors that project a set of
functions of K onto (respectively) V and Γ.
PV is simply equal toW ◦W−1 where W denotes the wavelet transform operator,
i.e. PV is implemented by taking the inverse wavelet transform of {gj}j∈Z ∈ K
followed by a wavelet transform. The PΓ operator is trickier, it transforms a
sequence in {gj}j∈Z ∈ K into a sequence {hj}j∈Z ∈ Γ such that its K-norm
is minimum. After solving a simple problem of calculus of variation [Mallat98]
(again!), one finds that hj(x) = ǫj(x) + gj(x) where

ǫj(x) = αe2−jx + βe−2
−jx

, x ∈ [xk, xk+1]

xi and xi+1 are the absissa of two consecutive local maxima and α, β should be
chosen such that

{

ǫj(xk) = Wf (2
j, xk)− gj(xk)

ǫj(xk+1) = Wf (2
j, xk+1)− gj(xk+1)

An implementation of PΓ is available page 122. For more details (stability of the
reconstruction, rate of convergence, . . . ) the reader is sent to the articles already
cited in this subsection.

4.2.2 Practical considerations

Even if the representation is not unique, the algorithm is suitable for practical
purpose. Figure 4.4, presents some experimental results on the “lenna” image. On
a visual point of vue there is no difference between images (a) and (b) (image (b)
has been reconstructed using all the wavelet maxima of the original one). If
we consider only the significant maxima, we loose some textural information,
but the reconstructed images still approximate correctly the original image ((c)
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and (d) have been computed by considering smaller sets of local maxima). This
phenomenon is stated in [Mallat98], as well. Our experiments also suggest that
15 to 30 iterations are required for building a reasonnable approximation of an
image. Obviously, due to its iterative nature, the reconstruction algorithm is
computationaly intensive and is not suitable (in its direct form) for real-time
processing.

4.3 Image fusion

4.3.1 Estimation of K, α and σ

An interesting property of the wavelet maxima representation is that it allows to
estimate some of the parameters that characterize an isolated singularity2. The
following theorem, prooved in [Meyer90], relates the decay of the wavelet coeffi-
cients to the Hölder regularity (see definition page 124) of the original function.

Theorem 9 A function f is uniformly Hölder-α over the interval [a, b] if and
only if there exists K > 0 such that

∀c ∈ [a, b], |Wf (2
j, c)| ≤ K2jα

This theorem also holds for tempered distributions, e.g. δ. As a basic conse-
quence: if a function is uniformly Hölder-α (α < 0) the amplitude of the wavelet
coefficients decrease as j increase, while if α > 0 the coefficients increase with the
scale parameter. Now, if we reintroduce the gaussian model discussed in §3.4.2,
i.e. the function f contains an isolated Hölder-α singularity at ν ∈ [a, b] smoothed
by a gaussian operator, we have

Wf⊗gσ
(2j , c) = 2j

d

dc
(f ⊗ gσ ⊗ θ̄2j )(c)

Assuming that gσ ⊗ θ̄2j ≈ θ̄Σ, Σ =
√
σ2 + 22j leads to

Wf⊗gσ
(2j, c) ≈ 2j

Σ
Wf (Σ, c)

Therefore, if f is Hölder-α over [a, b], we end up with

∃K > 0, ∀c ∈ [a, b], |Wf⊗gσ
(2j, c)| ≤ K2jΣα−1

Which can be rewritten as

log2 |Wf⊗gσ
(2j, c)| ≤ log2K + j +

α− 1

2
log2(σ

2 + 22j) (4.2)

2The non-isolated singularities case is notably addressed in [Mallat92a, Hwang93].
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Figure 4.4 Reconstruction via the alternate projection algorithm.

(a) Original image.
(b) Reconstruction from all the lo-
cal maxima (30 it.).

(c) Reconstruction from a subset of
the local maxima (30 it.).

(d) Reconstruction from a smaller
subset of the local maxima (30 it.).
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Given the wavelet maxima trace {cj, |Wf⊗gσ
(2j , cj)|}1≤j≤J of the singularity at

ν ∈ [a, b], Stéphane Mallat (in [Mallat92a, Mallat92b]) proposes to estimate K,
α and σ by finding their values such that equation (4.2) is as close as possible of
an equality. This is done by optimizing

∆ =
J∑

j=1

(

log2 |Wf⊗gσ
(2j, cj)| − log2K − j − α− 1

2
log2(σ

2 + 22j)
)2

using a gradient descent method, e.g.






K(k+1)

α(k+1)

σ(k+1)




 =






K(k)

α(k)

σ(k)




+ ρ






∂∆/∂K
∂∆/∂α
∂∆/∂σ






where K(0), α(0) and σ(0) are chosen arbitrarly. These parameters express diffe-
rent characteristics of the singularity: K is related to its amplitude, α to its type
and σ to its degree of smoothness. However, the raw wavelet maxima represen-
tation is not sufficient for estimating these values, since we need to access the
wavelet maxima trace of the singularity, i.e. we need to link the wavelet maxima
across scales. This representation, known as the wavelet maxima tree, is briefly
presented in the next subsection.

4.3.2 The wavelet maxima tree

In order to link the wavelet maxima across scales one can use an ad hoc algorithm,
as the one proposed in [Mallat92b]. Basically, it consists in linking two successive
wavelet maxima if they are close to each other and if their corresponding values
are of the same sign and of the same order. However, smarter algorithms can
be found in the litterature such as the one in [Lu93]. From the sets of wavelet
maxima at scales j and j + 1

Ωj =
{

c
(j)
k ,Wf

(

2j, c
(j)
k

)}

k=1,...,Nj

, Ωj+1 =
{

c
(j+1)
k ,Wf

(

2j, c
(j+1)
k

)}

k=1,...,Nj+1

Jian Lu proposes a measure of interaction based on the reproducing kernel cor-
responding to the wavelet (recall equations (2.10) and (2.11))

Γ
(

c
(j+1)
k , c

(j)
l

)

=Wf

(

2j+1, c
(j+1)
k

)

κ′2j+1,2j

(

c
(j+1)
k − c

(j)
l

)

The wavelet maxima tree is then constructed reccursively using a coarse-to-fine
strategy. For a given maxima at scale j, the maxima at scale j + 1 which ma-
ximizes Γ

(

c
(j+1)
k , c

(j)
l

)

is marked as its parent node. The main child of a parent

node at scale j+1 is the one which maximizes Γ
(

c
(j)
l , c

(j+1)
k

)

among its children.
A main branch connects a maxima to the tip end of the tree and provides the
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approximation of the trace of a wavelet maxima required for estimating the pa-
rameters discussed in the previous subsection. Note that this algorithm works
only if the smoothing operator θ is a good approximation of a Gauss function,
this implies that the behavior of the wavelet maxima is convenient, e.g. it satis-
fies a causality property (any feature at a coarser scale must have its origin at
a finer scale), see [Bergholm87, Lu93]. This algorithm also requires to estimates
the reproducing kernel of the wavelet transform. A more detailled presentation
is available in [Lu93].

4.3.3 Signal fusion

Once the maxima tree has been builded, one can estimate the parameters that
characterize the different singularities present in the signal. This information
may be used for denoising purpose: a gaussian white noise creates non-significant
wavelet maxima which can be eliminated via a thesholding operation, moreover,
it introduces singularities whose Hölder exponant are negative [Mallat92a] (we
are therefore able to identify them under the assumption that the original signal
contains only some Hölder-(α ≥ 0) singularities). The remaining main branches,
in the two signals, should be matched and selected in order to build the fused
one. For example, a matching criterion can be designed by taking into account
the distance between two main branches present in the two signals and their
corresponding estimated Hölder exponants. While a selection operator (between
two associated main branches) can be based on the estimation of K (amplitude)
and σ (degree of smoothness).

4.3.4 Extension to images

The extensions of the previous results and algorithms to the two-dimensional case
are not straightforward (!). The algorithm used for building the wavelet max-
ima tree becomes trickier (notably because the convenient behavior of the one-
dimensional wavelet maxima is not preserved when considering two-dimensional
signals). Once again, the reader is sent to [Lu93] for a detailled description of
the two-dimensional algorithm. Moreover, the matching procedure may be more
complicated because it has to take into account the geometric properties of the
multiscale contours. In that case, more research is necessary. However, we hope
that the theoretical arguments discussed in this chapter are sufficient for moti-
vating further studies.
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Conclusion

This thesis provides some solutions to the problems involved in the design of an
image fusion algorithm. We have first provided a complete model for solving the
registration problem, which leads to reasonable experimental results. Concerning
this problem, the next step is the automatisation of the whole registration proce-
dure. However, it is highly recommended to simplify the problem (for example,
by using some reference objects) in order to get a reliable algorithm. Secondly, we
have introduced an area-based maximum selection rule for performing the image
fusion and obtained reasonnable experimental results, as well. However, it may
be interesting to go deeper in the theoretical explanations of the (relative) success
of the method. We believe that it can help improving the quality of the fused
images by giving other operators (see the discussion in the next paragraph). Obvi-
ously, this fusion operator (associated with the fast wavelet transform algorithm)
is suitable for fast computations. Finally, we have discussed the mathematical
tools required for designing a feature-oriented image fusion algorithm. On this
subject, more research is necessary but we hope that the arguments developed in
this work are sufficient to motivate further studies.

When reading (again!) the last chapter of Yves Meyer’s book [Meyer94] (“Com-
pression des données et restauration d’images bruitées”), one can found some
indications which (indirectly) explain the relevancy of performing the image fu-
sion in an orthogonal wavelet basis. Basically, an orthogonal wavelet basis is
optimal for representing the relevant information contained in a signal (in the
work of David Donoho and for the fusion problem the relevant information are
the sharp transitions) compared to the rest (noise, texture and regular parts of
the signal). The philosophy of the fusion algorithm, presented in this thesis, is
then to use a “convenient point of view”, in which the sharp variations are ef-
ficiently discriminated and to use this property in order to perform the fusion
by considering only the relevant information. We believe that the works of Yves
Meyer and David Donoho are good starting points for trying to demonstrate
the optimality of using orthogonal wavelet decompositions for solving the fusion
problem (for particular but convenient classes of functions).
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Appendix A

Registration: linear systems

A.1 Quadratic model: systems

The linear system, corresponding to equation (1.7), and its estimation (using the
set of control points discussed in §1.6) are shown on system A.1. To obtain f̃v,
one should modify the right hand side of system A.1 and use

~θ′ =

(
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i

u2i ṽ
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i
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′
i
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)T

which gives (using the same set of control points)

~θ′ = (0.2593 0.2492 0.0543 − 0.1747 3.4322 3.8765)T

Solving this two systems leads to the sets of estimated parameters given in equa-
tions (1.10) and (1.11).

A.2 Third order model: systems

Systems A.2 and A.3 respectively correspond to equations (1.8) and (1.9). Solving
these systems leads to the sets of estimated parameters given in equations (1.12)
and (1.13).
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Appendix B

Towards an automatic

registration

Introduction

This chapter discusses the feasibility of designing an automatic registration pro-
cedure. Obviously, this process can be very simplified if done in a controlled
environment, e.g. in presence of a calibration grid. Here, we focus on performing
the registration using only the frames coming out the two cameras. Most of the
time, an automatic procedure first requires to extract some control points (or
salient points) within the two images. Different methods have been proposed,
for example in [Zheng93] where a Gabor transform is used or in [Li96a] where
a wavelet-based method is presented. However, when human-made objects are
available, it may be interesting to exploit the fact that they contain corners.
Moreover, a human-made object, such that a house, will (most of the time) be
present in both the FIR and the NIR image. In this chapter, we focus on the
pipelines of contours and corners extraction (the first one is a necessary preli-
minary for using direct or hybrid corner detectors) and then present briefly the
problem of control points matching.

B.1 Contours extraction

This section describes the pipeline of contours extraction, based on the gradient
approach, i.e. only one differentiation. In what follows, we briefly introduce the
Canny [Canny86] and Deriche [Deriche87] operators, we then discuss the different
steps (extraction of the local maxima and hysteresis thresholding) necessary to
obtain the contours from the output of an operator.
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B.1.1 Optimal edge detectors

A simple edge model

The basic idea behind optimal operators is based on a continuous edge model of
the form

I(x) = Au−1(x) +B(x)

where u−1(x) denotes the unit-step function and B(x) is a centered gaussian
white noise of variance equal to σ2. We then consider the convolution Θ(x) with
an edge detector f(x)

Θ(x) =
∫ +∞

−∞
I(y)f(x− y)dy

The Canny criteria

According to this model, John Canny [Canny86] has proposed to optimize the
three following requirements, in order to find the form of the detector f .

Low probability of error (failing to mark of falsely marking real edge points).
This criterion consists in finding an asymetric operator which maximises the
signal-to-noise ratio, i.e.

Σ =

∫ 0
−∞ f(x)dx

σ
√
∫ +∞
−∞ f 2(x)dx

Good localization. points marked as edges should be as closed as possible
to the true edge. This criterion is defined as being the inverse of the standard
deviation of the position of the true edge, i.e.

Λ =
A|f ′(0)|

√
∫ +∞
−∞ f ′2(x)dx

Only one response to a single edge. consists in a constraint on the average
distance between two maxima (xmax), i.e.

xmax =

√
√
√
√

∫+∞
−∞ f ′2(x)dx
∫+∞
−∞ f ′′2(x)dx

John Canny has then proposed a FIR operator which optimizes the product ΣΛ
under the constraint that the third criterion is fixed to a constant value k. In
practice, the Canny operator is approximated by the first derivative of a Gauss
function which leads to ΣΛ = .92 (k = .51).

Renaud Sirdey 108



B.1 Contours extraction 1997/98

The Deriche operator

Rachid Deriche [Deriche87] has derived an IIR operator that optimizes ΣΛ and
leads to ΣΛ = 2 (k = .44). The operator has the form1

f(x) = Sxe−α|x|

In one dimension, this operator can be implemented using two stable second
order reccursive filters (an implementation using the C-language is given in pro-
gram B.1). An interesting property of the operator comes from the α parameter
which allows to adapt it to the content of the image. Roughly, for a noisy ima-
ge, α has to be small (.25 to .5) which means that Σ (detection) is favoured to
the detriment of Λ (localization), one the other hand, for a “clean” image, α
must be relatively large (≈ 1). In two dimensions, the output of the operator
is computed via two sets of two reccursive filters applied separately on the rows
and the columns of the image (this operation must be performed twice—with
different parameters—for obtaining the partial derivatives according to x and y).
More details (derivation, implementation, . . . ) are notably available in [Deriche].
Figure B.1 shows the output of the Deriche operator on the “singe” image.

B.1.2 Local maxima and hysteresis thresholding

Extraction of the local maxima

Given some estimations of the partial derivatives according to x and y, one can
compute the norm and the direction of the gradient, i.e.

|~∇I| =
√
√
√
√

(

∂I

∂x

)2

+

(

∂I

∂y

)2

and

φ = tan−1
∂I/∂y

∂I/∂x
(B.1)

and use this information in order to extract the local maxima of the gradient
norm in the gradient direction. This is necessary for obtaining thin coutours,
i.e. contours whose thickness is equal to one pixel. However, the coordinates
given by the gradient direction do not coincide (in general) with integer pixel
coordinates: a bilinear interpolation scheme should be applied is order to get a
value at this location. A given point is then marked as a local maxima if its
value is greater than those of its two neighbours in the gradient direction. See
figure B.2.

1It is the limit of f(x) = S
ω
e−α|x| sinωx when ω → 0. This case corresponds to the largest

value of ΣΛ.
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Program B.1 Implementation of the one-dimensional Deriche operator.

#define SQR(x) ((x)*(x))

#define ABS(x) (x<0?-1:(x>0?1:0))

void deriche1d(float *x,int n,float a)

{

int i;

float *y1,*y2,b,c,k;

if(y1=(float*)malloc(n*sizeof(float)),

y2=(float*)malloc(n*sizeof(float)),

!y1 || !y2)

{

fprintf(stderr,"\nmalloc() error");

exit(1);

}

b=(float)exp((double)(-a));

c=(float)exp((double)(-2*a));

k=SQR(1-b)/(1.+2.*a*b-c);

for(i=0;i<n;i++)

{

int ii=n-i-1;

y1[i]=(i-1<0?.0:x[i-1])+

2*b*(i-1<0?.0:y1[i-1])-

c*(i-2<0?.0:y1[i-2]);

y2[ii]=(ii+1>=n?.0:x[ii+1])+

2*b*(ii+1>=n?.0:y2[ii+1])-

c*(ii+2>=n?.0:y2[ii+2]);

}

for(i=0;i<n;i++)

x[i]=ABS(k*b*(y1[i]-y2[i]));

free(y1);

free(y2);

}
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Figure B.1 Output of the Deriche operator.

(a) Original image. (b) ∂
∂x
I ⊗ f .

(c) ∂
∂y
I ⊗ f . (d) Gradient norm.
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Hysteresis thresholding

The last step consists in eliminating the non-significant local maxima, i.e. those
which correspond to small values of the gradient norm. Most of the time, this
operation is performed via a thresholding procedure. A smart way of doing it
is called a hysteresis thresholding: given a high and a low level, the hysteresis
thresholding keeps the local maxima with corresponding gradient norm greater
than the high level or greater than the low one and connected (in a 8-connexity
sense) to a local maxima whose norm is greater than the high level. The 8-
connexity is defined as

Definition 8 (8-connexity) A given point A is said to be connected to a given
point B if one of its eight neighbours is the point B or if one of its eight neighbours
is connected to the point B.

This thresholding technique gives better results than a simple one-level threshol-
ding operator, because it is able to extract some contour points below the noise
level. Figure B.2 shows the contours obtained after an hysteresis thresholding.

Figure B.2 Contours extraction from figure B.1.

(a) Local maxima. (b) Hysteresis tresh.

B.2 Corners extration

This section is devoted to corner extraction. Our entry point in this field is the
recent thesis by Thierry Blaska [Blaska97]. In what follows, we first introduce
the different possible ways of performing a corner extraction and then present a
so-called hybrid operator.
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B.2.1 Existing operators

According to [Blaska97], there are four classes of corner extractors, namely: di-
rect, pixel-based, hybrid and model-based. A direct operator consists in ex-
tracting the local maxima of the curvature of a given contour string2. However,
since the contour has been discretized, a direct estimation of the curvature (u-
sing finite differences) is highly sensitive to quantization noise. Obviously, there
exists different solutions for avoiding this problem [Blaska97] (an example, based
on the wavelet maxima representation is available in [Lee95]). A pixel-based
operator detects the corners by considering information coming only from the
grey-scale values of the image, some examples are given in [Zuniga83] or (more
recently) [Smith97]. Hybrid operators, such as the one presented in [Deriche90],
combine some information coming from both the grey-scale values and the con-
tours. Instead of estimating the curvature directly from the contours, they use a
more robust information coming from the intensity gradient (already computed
in §B.1 by means of an optimal operator). The more recent model-based approach
is fully presented in [Blaska94, Blaska97].

B.2.2 A hybrid operator

Here, the corners extraction is performed using a hybrid algorithm which consists
in detecting the sharp variations on the orientation of a given contour. First of all,
it is necessary to extract the edges by means of the pipeline discussed in §B.1. The
contour strings are then memorized in a linked-list structure and their orientations
(computed using equation (B.1)) provide one-dimensional signals such as the ones
shown on figure B.4. The points of sharp variations are then detected by means
of a one-dimensional Deriche operator (see program B.1): the locations of the
local maxima of its modulus (greater than a threshold level) give the corners
present on a contour string. Figure B.3 shows an example of corners detection
and figure B.4 the associated orientations and responses of the one-dimensional
Deriche operator.

B.3 Control points matching

Given two (or more) sets of control points, extracted automatically from two (or
more) images, the point pattern matching problem consists in linking some points
in the first set to some points in the second set. This problem is a tricky one
and many algorithms have been proposed for solving it, e.g. [Chang97, Skea93,

2A contour is often defined as a parametric curve C(t) = (x(t) y(t))T , t 6= s, whose tangent

vector is given by T (t) = (ẋ(t)2 + ẏ(t)2)
1

2 (ẋ(t) ẏ(t))T . Its orientation is therefore given by
tan−1 φ(t) = ẏ(t)/ẋ(t) and its curvature is defined as κ(s) = dφ(s)/ds, s is the curvilinear
absissa. See [Blaska97, Daintith89].
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Figure B.3 Example of corners extraction.

(a) Original imag. (b) Contours. (c) Corners.

Starink95, Yang94] a survey is available in [Cox]. Due to the differences between
the two images (they may have been observed with different sensors at diffe-
rent positions and at different wavelengths, moreover, they are—in general—not
perturbated by the same noise pattern) the number of control points (say N1)
detected in the first image is, most of the time, not equal to the number of points
(say N2) detected in the second one. Moreover, a point in the first set does not
necessarily have a corresponding point in the second set and vice versa. The
main problem consists in the difficulty of formulating convex contraints which
allow to use “classical” optimization methods, such as the gradient descent. To
overcome this problem, it may be relevant to use some stochastic optimization
algorithms, such as the simulated annealing method [Falkenauer98] or the ge-
netic algorithm [Falkenauer98, Whitley, Winter95], as proposed in [Starink95,
Studholme95, Hill93]. However, using these algorithms requires to design proper
cost functions that take into account all the a priori knowledge we have about
the transformation that maps one set onto the other (e.g. the parametric form
of the model). A possible cost function can be based on Σu and Σv (see §1.4.2
and §1.5.2) regularized by a constraint on the minimum number of points to be
matched3.

3Otherwise, the algorithm will converge to a small set of corresponding points such that
Σu = Σv = 0.
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Figure B.4 Contours orientations and responses of the Deriche operator.
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Appendix C

Wavelet transform algorithms

This chapter presents the implementation, using the C-language, of a few wavelet
transform algorithms. Programs C.1 and C.2 propose some implementations of
(respectively) the algorithme à trous and its inverse (see §2.3.3 and algorithm 2.1,
page 34). Programs C.3 and C.4 give implementations of the fast wavelet trans-
form and its inverse discussed in §2.6.1 (see algorithm 2.2, page 42, as well).
Program C.5 gives an implementation of the PΓ operator, discussed in §4.2.1,
coming from cs.nyu.edu/pub/wave.
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Program C.1 Implementation of the algorithme à trous.

void atrous(float *next_a,

float *next_d,float *a,int s,int n,

float *h,int h_begin,int h_end,

float *g,int g_begin,int g_end)

{

int i,j;

for(i=0;i<n;i++)

{

next_a[i]=.0;

for(j=h_begin;j<=h_end;j++)

{

int ii=i+(j<<s);

ii=(ii<0?(n+ii)%n:(ii>=n?(ii%n):ii));

next_a[i]+=a[ii]*h[j-h_begin];

}

next_d[i]=.0;

for(j=g_begin;j<=g_end;j++)

{

int ii=i+(j<<s);

ii=(ii<0?(n+ii)%n:(ii>=n?(ii%n):ii));

next_d[i]+=a[ii]*g[j-g_begin];

}

}

}
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Program C.2 Implementation of the inverse algorithme à trous.

void iatrous1d(float *next_a,

float *next_d,float *a,int s,int n,

float *h,int h_begin,int h_end,

float *g,int g_begin,int g_end)

{

int i,j;

for(i=0;i<n;i++)

{

next_a[i]=.0;

for(j=h_begin;j<=h_end;j++)

{

int ii=i+(j<<s);

ii=(ii<0?(n+ii)%n:(ii>=n?(ii%n):ii));

next_a[i]+=a[ii]*h[j-h_begin];

}

next_d[i]=.0;

for(j=g_begin;j<=g_end;j++)

{

int ii=i+(j<<s);

ii=(ii<0?(n+ii)%n:(ii>=n?(ii%n):ii));

next_d[i]+=a[ii]*g[j-g_begin];

}

}

}
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Program C.3 Implementation of the fast wavelet transform.

int fwt1d(float *sig,int n,

float *h,int h_begin,int h_end,

float *g,int g_begin,int g_end)

{

float *tmp;

int i,j,min_l=MAX(min_length(h_begin,h_end),

min_length(g_begin,g_end));

if(tmp=(float*)malloc(n*sizeof(float)),!tmp)

{

fprintf(stderr,"\nmalloc() error\n");

exit(1);

}

while(n!=min_l)

{

for(i=0;i<n;i+=2)

{

tmp[i>>1]=.0;

tmp[(i>>1)+(n>>1)]=.0;

for(j=h_begin;j<=h_end;j++)

{

register int k=i+j;

tmp[i>>1]+=h[j-h_begin]*(k<0?sig[n+k]:

(k>=n?sig[k%n]:sig[k]));

}

for(j=g_begin;j<=g_end;j++)

{

register int k=i+j;

tmp[(i>>1)+(n>>1)]+=g[j-g_begin]*(k<0?sig[n+k]:

(k>=n?sig[k%n]:sig[k]));

}

}

memcpy(sig,tmp,n*sizeof(float));

n>>=1;

}

free(tmp);

return(min_l);

}
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Program C.4 Implementation of the fast inverse wavelet transform.

void ifwt1d(float *sig,int n,

float *h,int h_begin,int h_end,

float *g,int g_begin,int g_end)

{

float *tmp;

int i,j,l=MAX(min_length(h_begin,h_end),

min_length(g_begin,g_end));

if(tmp=(float*)malloc(n*sizeof(float)),!tmp)

{

fprintf(stderr,"\nmalloc() error\n");

exit(1);

}

while(l!=n)

{

for(i=0;i<l<<1;i++)

{

tmp[i]=.0;

for(j=-h_end;j<=-h_begin;j++)

if( !((i+j)&0x1) )

{

register int k=(i+j)/2;

tmp[i]+=h[-j-h_begin]*(k<0?sig[l+k]

:(k>=l?sig[k%l]:sig[k]));

}

for(j=-g_end;j<=-g_begin;j++)

if( !((i+j)&0x1) )

{

register int k=(i+j)/2;

tmp[i]+=g[-j-g_begin]*(k<0?sig[l+k+l]:

(k>=l?sig[k%l+l]:sig[k+l]));

}

}

l<<=1;

memcpy(sig,tmp,l*sizeof(float));

}

free(tmp);

}
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Program C.5 Implementation of PΓ.

interp(float u0, float un, int n,

float *u, float r1)

{

double r_1, r_2, r2,

rn_1, r2n_2, r2n,

r2n_2i, rn_i, ri, r2i, a0, an;

int i;

rn_1=r1;

for(i=1;i < n-1;++i)

rn_1*=r1;

r2n_2=rn_1*rn_1;

r_1=1./r1;

r_2=r_1*r_1;

r2=r1*r1;

r2n=r2n_2*r2;

a0=u0/(1.-r2n);

an=un/(1.-r2n);

u[0]=u0;

r2n_2i=r2n_2;

r2i=r2;

ri=r1;

rn_i=rn_1;

for(i=1;i<n;i++)

{

u[i]=a0*ri*(1-r2n_2i)+an*rn_i*(1-r2i) ;

r2n_2i*=r_2;

r2i*=r2;

ri*=r1;

rn_i*=r_1;

}

u[n]=un;

}
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Appendix D

Mathematical complement

D.1 Hilbert space and Riesz basis

Definition 9 (Abstract Hilbert space) A set of abstract elements which pos-
sesses the three following properties is said to be a Hilbert space H,

1. H is a linear space i.e. the operations of addition and scalar multiplication
are defined for its elements, in particular there exists an element 0 such
that 0 = 0.f for all element of H.

2. H is a metric space whose metric is derived from a scalar product, denoted
by < f, g >, so that < af, g >= a < f, g > for all scalar a, < f +g, h >=<
f, h > + < g, h >, < f, g >=< g, f >∗, < f, f >> 0 for f 6= 0 and
< f, f >= 0 for f = 0. The norm of an element f is then defined by
‖f‖ =< f, f >

1
2 .

3. H is a complete space i.e. if a sequence of elements {fn} satisfies

lim
n,m→∞

‖fn − fm‖ = 0

then there exists an element f̃ such that limn,m→∞ ‖fn − f̃‖ = 0.

The properties of these spaces are notably studied in [Riesz55, Kolmogorov61].

Definition 10 (Riesz basis) A family of element {ek} of an abstract Hilbert
space H is said to be a Riesz basis of H if the following properties are (simulta-
neously) satisfied for all x in H

1. ∃{λk}/x =
∑

k λkek.

2. ∃A,B ∈ R2+/ 1
A
‖x‖2 ≤ ∑

k |λk|2 ≤ 1
B
‖x‖2.
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D.2 Hölder (Lipschitz) regularity

D.2.1 Definition

This subsection aims at defining the concept of Hölder exponant. We use the
presentation of [Mallat98]. The idea is to start from the taylor series of f at ν
(f is assumed to be N times differentiable on [ν − h, ν + h])

pν(x) =
N−1∑

k=0

f (k)(ν)

k!
(x− v)k +RN

As shown in [Weisstein98]

RN = ε(x) = f(x)− pν(x) =
(x− ν)N

N !
f (N)(x)

and hence

∀x ∈ [ν − h, ν + h], |ε(x)| ≤ |x− ν|N
N !

sup
y∈[ν−h,ν+h]

|f (N)(y)|

The notion of Hölder regularity generalizes the previous inequality to non integer
exponents.

Definition 11 (Hölder regularity) A function is pointwise Hölder-α at ν if
there exists K > 0 and a polynomial pν of degree N = ⌊α⌋1 such that

∀x ∈ R, |f(x)− pν(x)| ≤ K|x− ν|α (D.1)

A function is uniformly Hölder-α over an interval [a, b] if it satisfies the previous
equation ∀ν ∈ [a, b] with a constant K that does not depend on ν. The Hölder
regularity of f at ν over [a, b] is the sup of the α such that f is Hölder-α.

D.2.2 A few remarks

If f is uniformly Hölder-α (α > N) in the neighbourhood of ν then f is N
times continuously differentiable in the neighbourhood of ν. If 0 ≤ α < 1 then
pν(x) = f(ν) and equation (D.1) becomes

∀x ∈ R, |f(x)− f(ν)| ≤ K|x− ν|α

If α < 1, f is not differentiable in the neighbourhood of ν and the Hölder exponent
characterizes the type of singularity. For example [Daubechies92, Mallat92b]
Heaviside-like singularities are Hölder-0 while Dirac-like ones are Hölder-(−1).
Note that the uniform Hölder regularity of f over R is related to a condition on
the decay of its Fourier transform via the following theorem (proofs in [Mallat98,
Daubechies92]).

1⌊α⌋ denotes the largest integer such that N ≤ α.
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Theorem 10 A function f is bounded and uniformly Hölder-α over R if

∫ +∞

−∞
|f̂(ξ)|(1 + |ξ|α)dξ <∞

D.3 Spaces: W α, Bα
p,q, Cα

The purpose of this section is obviously not to provide a deep analysis of the
notions of Sobolev (W α), Besov (Bα

p,q) and Hölder (Cα) spaces (the notations
are taken from [Perrier, Meyer90]) spaces and their relationships with orthogonal
wavelet decompositions (for that purpose the reader is directly sent to Yves Me-
yer’s book [Meyer90]). Our goal is just to (very) briefly introduce this subject.

D.3.1 Short presentation

Besov spaces are subsets of Lp(R). They are extensions of Sobolev and Hölder
spaces in which the smoothness of a given function is finer characterized. Ba-
sically, the fact that a function lies in W α or Cα gives an idea of its global
smoothness, while its membership of Bα

p,q gives some information about its local
smoothness, e.g. piecewise regular functions belong to Besov spaces [Mallat98].
The classical definition of Besov spaces in based on the modulus of smooth-
ness [Zygmund68]

ωp(f ; h) = ‖τ−hf − f‖Lp(R)

and on the two following semi-norms [Delyon93, Perrier, Devore92] (1 ≤ p, q <
∞)

• 0 < α < 1:

Nα
p,q(f) =

(
∫ +∞

0

(

ωp(f ; h)

hα

)q
dh

h

) 1
q

• α = 1:

N1
p,q(f) =

(
∫ +∞

0

(

ω⋆p(f ; h)

h

)q
dh

h

) 1
q

where ω⋆p(f ; h) = ‖τ−hf−2f+τhf‖Lp(R). If q =∞, Nα
p,∞(f) = supR+∗ ωp(f ; h)/h

α

with the modification for α = 1. We then need (again for 0 < α ≤ 1)

‖f‖Bα
p,b
= ‖f‖Lp(R) +Nα

p,q(f)

for completing the definition of a Besov space.

Definition 12 (Besov space) A function f ∈ Lp(R) belongs to the Besov space
Bα
p,q if

• 0 < α ≤ 1: ‖f‖Bα
p,q
<∞.
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• α > 1: ‖f (k)‖
B

α−⌊α⌋
p,q

<∞, 0 ≤ k ≤ ⌊α⌋2

Provided ‖.‖Bα
p,q
, a Besov space has a Banach space3 structure [Perrier]. Note

that Bα
∞,∞ = Cα ({f ∈ L∞(R)/ supR∗+ ω∞(f ; h)/h

α < ∞} [Daubechies92]) and
that Bα

2,2 = W α ({f ∈ L2(R)/‖f (α)‖L2(R) =
1
2π
‖(iξ)αf̂‖L2(R) < ∞}, f (α) denotes

the weak or Sobolev deritative of f , α is not necessarily an integer [Mallat98])
(notably) [Perrier, Meyer90, Triebel78].
Orthogonal wavelet basis have interesting properties for analysing these classes
of function. As demonstrated by Yves Meyer [Meyer90], the norm ‖.‖Bα

p,q
is

equivalent to a norm on the wavelet coefficients if the multiresolution analysis
generated by the scaling function/wavelet pair is r-regularly (in Meyer’s sense)
with r ≥ α i.e. [Meyer90, Perrier, Delyon93, Donoho91a]

‖f‖Bα
p,q
≍ ‖µ0‖lp(Z) +





+∞∑

j=0

2jq(α+
1
2
− 1

p
)‖γj‖qlp(Z)





1
q

(D.2)

recall that µ0;k =< f, φ0;k > and that γj;k =< f, ψj;k >, the symbol ≍ means
that there exists two constants A and B such that the ratio of the two sides is
bounded bertween them. It is therefore easier to determine if a given function
f ∈ Lp(R) belongs to Bα

p,q.
A very interesting result comes from the fact that an orthogonal wavelet basis
(obeying the regularity condition) provides an unconditionnal basis4 of Bα

p,q, see
(again!) [Meyer90]. This implies that orthogonal wavelet basis are “optimal”
(in some sense) for analysing and processing the functions belonging to Bα

p,q e.g.
simple (thresholding) operators, applied in the unconditionnal basis, work better
for a whole class of problems (namely: compression, estimation and recovery)
than they do in any other orthogonal basis (the mathematical details are avail-
able in [Donoho91a]). This is (roughly) a consequence of the fact that a function
is charactized by a few “relevant” coefficients in the unconditionnal basis. For
more details on these functionnal spaces (other definitions, extensions to n dimen-
sions, other properties, . . . ) the reader is sent to [Devore88, Frazier85, Triebel78]
and to almost every books about wavelet analysis since this theory uses them
for an increasing number of applications (most of these works—known to the
author—have already been cited in this subsection).

2The associated norm (for α > 1) becomes ‖f‖Bα

p,q
=
∑⌊α⌋

k=0 ‖f
(k)‖

B
α−⌊α⌋
p,q

.
3Banach spaces generalize the notion of Hilbert space (definition 9): the norm is not neces-

sarly defined from a scalar product [Riesz55].
4As defined in [Daubechies92]: a family of elements {ek} of a Banach space B is a Schauder

basis of B if ∀f ∈ B, ∃{µk} (unique) /f = limN→∞
∑N

k=1 µkek. Moreover, if
∑

k µkek ∈ B ⇒∑

k |µk|ek ∈ B the family {ek} is said to be an unconditionnal basis of B. On a Hilbert space,
an unconditionnal basis is a Riesz basis.
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D.3.2 Example: l’algèbre des bosses

In order to give a more “intuitive” idea of the kind of functions that belong to
Besov spaces, this subsection is devoted to a (short) presentation of B1

1,1 also
known as l’algèbre des bosses gaussiennes (“bump algebra” [Donoho91b]) intro-
duced by Yves Meyer [Meyer90]. In what follows, gµ;σ(x) denotes the Gauss
function

e−
(x−µ)2

2σ2

such that gµ;σ(µ) = 1 instead of the usual normalization (area equal to 1).
L’algèbre des bosses (B) is defined as the class of functions (vanishing at infinity)
which admit a (non-unique) decomposition of the form

f(x) =
+∞∑

k=0

λkgµk;σk
(x) (D.3)

satisfying
∑

k |λk| <∞. Provided the norm ‖f‖B = inf
∑

k |λi|, such that {λk}k∈N
satisfies equation (D.3), B is a Banach space. In an orthogonal wavelet basis
(generated by a sufficiently regular multiresolution analysis), the decomposition
of a function f belonging to B must statisfy

+∞∑

j=−∞
2

j

2‖γj‖l1(Z) (D.4)

and vice versa (proof in [Meyer90]). Note that equation (D.4) corresponds to
equation (D.2) with p = q = α = 1: this illustrates the fact that the “bump alge-
bra” is B1

1,1. The class B contains some functions which may have considerable
spatial hinomogeneity e.g. a function f ∈ B can be extremely spiky in one part
of its domain and completly flat in another location. This type of behavior could
not be possible in a Hölder or Sobolev space since it is required that a function
is “equally” smooth at every points on its domain [Donoho91b].
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