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Abstract

This paper is devoted to the study of a resource-constrained scheduling problem, the Process Move Programming prob-

lem, which arises in relation to the operability of certain high availability real-time distributed systems. Informally, this
problem consists, starting from an arbitrary initial distribution of processes on the processors of a distributed system,
in finding the least disruptive sequence of operations (non-impacting process migrations or temporary process interrup-
tions) at the end of which the system ends up in another predefined arbitrary state. The main constraint is that the capacity
of the processors must not be exceeded during the reconfiguration. After a brief survey of the literature, we prove the NP-
hardness of the problem and exhibit a few polynomial special cases. We then present a branch-and-bound algorithm for
the general case along with computational results demonstrating its practical relevance. The paper is concluded by a dis-
cussion on further research.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider a distributed system composed of a set U of processors and let R denote the set of resources

they offer. For each processor u 2 U and each resource r 2 R, Cu;r 2 N denotes the amount of resource r
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Fig. 1. Example of an instance of the PMP problem.
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offered by processor u. We are also given a set P of applications, hereafter referred to as processes, which con-
sume the resources offered by the processors. The set P is sometimes referred to as the payload of the system.
For each process p 2 P and each resource r 2 R, wp;r 2 N denotes the amount of resource r which is consumed
by process p. Note that neither Cu,r nor wp,r vary with time. Also, when jRj = 1, Cu,r and wp,r are respectively
denoted Cu and wp (this principle is applied to other quantities throughout this paper).

An admissible state for the system is defined as a mapping f : P ! U [ fu1g, where u1 is a dummy pro-
cessor having infinite capacity, such that for all u 2 U and all r 2 R we have
1 Th
stoppe
and th
X
p2Pðu;f Þ

wp;r 6 Cu;r; ð1Þ
where P(u; f) = {p 2 P : f(p) = u}. The processes in Pðf Þ ¼ P ðu1; f Þ are not instantiated, when this set is non-
empty the system is in degraded mode.

An instance of the Process Move Programming (PMP) problem is then specified by two arbitrary system
states fi and ft and, roughly speaking, consists in, starting from state fi, finding the least disruptive sequence
of operations at the end of which the system is in state ft. The two aforementioned system states are respectively
referred to as the initial system state and the final system state or, for short, the initial state and the final state.1

Fig. 1 provides an example of an instance of the PMP problem for a system with 10 processors, one
resource and 46 processes. The capacity of each of the processors is equal to 30 and the sum of the consump-
tions of the processes is 281. The top and bottom figures respectively represent the initial and the final system
states. For example, process number 23 must be moved from processor 2 to processor 6.

A process may be moved from one processor to another in two different ways: either it is migrated, in which
case it consumes resources on both processors for the duration of the migration and this operation has virtu-
ally no impact on service, or it is interrupted, that is removed from the first processor and later restarted on the
other one. Of course, this latter operation has an impact on service. Additionally, it is required that the
roughout the rest of this paper, it is assumed that P ðfiÞ ¼ P ðftÞ ¼ ;. When this is not true the processes in PðftÞ n P ðfiÞ should be
d before the reconfiguration, hence some resources are freed, the processes in P ðfiÞ n PðftÞ should be started after the reconfiguration
e processes in P ðfiÞ \ P ðftÞ are irrelevant.
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capacity constraints (1) are always satisfied during the reconfiguration and that a process is moved (i.e.,
migrated or interrupted) at most once. The latter constraint is motivated by the fact that a process migration
is far from being a lightweight operation (for reasons related to distributed data consistency which are out of
the scope of this paper), as a consequence, it is desirable to avoid processes hopping around processors.

Throughout this paper, when it is said that a move is interrupted, it is meant that the process associated to
the move is interrupted. This slightly abusive terminology significantly lightens our discourse. Additionally, it
is now assumed that jRj = 1, unless otherwise stated.

For each processor u, a process p in P(u; fi)nP(u; ft) must be moved from u to ft(p). Let M denote the set of
process moves. Then for each m 2M, wm, sm and tm respectively denote the amount of resource consumed by
the process moved by m, the processor from which the process is moved that is the source of the move and the
processor to which the process is moved that is the target of the move. Lastly, S(u) = {m 2M : sm = u} and
T(u) = {m 2M : tm = u}.

A pair (I,r), where I �M and where r : M n I ! f1; . . . ; jM n I jg is a bijection, defines an admissible pro-

cess move program, if provided that the moves in I are interrupted (the interruptions are performed at the
beginning) the other moves can be performed according to r without inducing any violation of the capacity
constraints (1). Formally, (I,r) is an admissible program if for all m 2MnI we have
2 It
proble
with o
wm 6 Ktm þ
X
m02I

sm0 ¼tm

wm0 þ
X

m02SðtmÞnI
rðm0Þ<rðmÞ

wm0 �
X

m02T ðtmÞnI
rðm0Þ<rðmÞ

wm0 ; ð2Þ
where Ku ¼ Cu �
P

p2P ðu;fiÞwp, thereby guaranteeing that the intermediate states are admissible.
Also note that because the final state is admissible, we have, for each processor u 2 U
Ku þ
X

m2SðuÞ
wm �

X
m2T ðuÞ

wm P 0: ð3Þ
Let cm denote the cost of interrupting m, the PMP problem then formally consists, given a set of moves, in
finding a pair (I,r) such that cðIÞ ¼

P
m2I cm is minimum.

After a brief survey of the literature, we study the complexity of the PMP problem and exhibit some poly-
nomially solvable special cases. We then present a branch-and-bound algorithm for the general case along
with computational results demonstrating its practical relevance.
2. Related work

The literature related to the present problem is quite scarce.
Coffman et al. [9,10] seem to be the first to study a problem relatively close to ours which consists in sched-

uling, without preemption, a collection of large file transfers (between storage devices) so as to minimize the
makespan of the overall transfer process. Each device is assumed to have the ability to communicate directly
with the others. However, they consider only a port constraint on the devices, that is they impose a bound on
the number of simultaneous file transfers a given device can engage in, and implicitly assume that the devices
have infinite capacity.

Carlier [6,7] studies a problem of scheduling debt payments. Although the context obviously differs, this
problem is quite close to the PMP problem. Given that each person has an initial capital as well as both debts
and credentials, the debt payment problem asks for an admissible debt payment program, that is an ordering of
the debt payments such that the capital of each person always remains positive and such that all the debts end
up being paid. Carlier then shows that if a payment must be performed in one go then the problem of finding
such a program or deciding that none exists is strongly NP-complete and exhibits a polynomial algorithm
which solves the problem when this constraint is relaxed (i.e., when the debts are breakable). In fact, it is
possible to interpret a debt between two persons as a process move between two processors2 (from the source
follows that the NP-completeness of the PMP problem (Section 3) can also be established by restriction to the debt payment
m. However, the NP-completeness result in [6,7] does not allow to establish the NP-completeness of the PMP problem for a system
nly two processors, in that sense Proposition 1 is a stronger result as far as the PMP problem is concerned.
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processor, associated to the creditor, to the target one, associated to the debtor) but not vice versa. Indeed, in
Carlier’s model, there can be only one debt from one person to another but not the other way around (other-
wise the two debts partially cancel leaving either one or no debt at all). Furthermore, the other notions
involved in the definition of the PMP problem (e.g., the interruption of a process) do not really have a coun-
terpart in the work of Carlier. Lastly, it should be emphasized that Carlier’s algorithm for the breakable debt
payment problem can be used to design a polynomial algorithm which solves the homogeneous case studied in
Section 4.2, in the special case where the digraph underlying the instance is asymmetric (i.e., under the con-
straint that when some processes must be transferred from a processor A to another processor B, no process
has to be transferred from B to A). Additionally, Carlier’s algorithm, which is based on network flow tech-
niques, is in essence very different from the algorithm presented in Section 4.2, which exploits strong connec-
tivity and eulerianity properties.

Gavish and Liu Sheng [13] study the problem of dynamically optimizing the performances of distributed
systems, such as computerized airline reservation systems, using dynamic migrations of files or database frag-
ments in reaction to temporary changes in usage patterns. They also stress that neither their study nor most
studies anterior to theirs have taken capacity constraints into account and that an assessment of the impact of
such constraints on distributed file management policies is an important open issue.

More recently, Hall et al. [14], Saia [20], and Anderson et al. [2] have studied various flavours of a problem,
referred to as the data migration problem, which consists in computing an efficient plan for moving objects
stored on devices in a fully connected network from one configuration to another. On top of requiring that
each device is involved in the transfer of only one object at a time, they explicitly consider capacity constraints
on each of the devices and assume both that the objects have the same size and that there is at least one free
space on each storage device in the initial as well as in the final configuration. Lastly, they also introduce the
notion of bypass node, which is an extra storage device that can be used to store objects temporarily, and study
the influence of allowing indirect migrations (via a bypass node) on the makespan of the reconfiguration.

Aggarwal et al. [1] introduce the load rebalancing problem which, given a suboptimal assignment of jobs to
processors, asks to relocate a subset of the jobs so as to decrease the makespan, that is the load of the heaviest
loaded processor. Among other results, they propose several efficient approximation algorithms for a variant
of the problem which asks to achieve the best possible makespan under the constraint that no more than k jobs
are relocated. They do not, however, have to consider capacity constraints on the processors as the system
reconfiguration is performed by removing all the relocated jobs and by subsequently restarting them on the
appropriate processors.

It turns out that the PMP problem is quite different from the above problems. In most of the aforemen-
tioned studies the objective is to minimize the duration of the reconfiguration under a set of constraints on
the legal parallelism and, sometimes, only under quite loose capacity constraints. On the contrary, in the
PMP problem we are interested only in minimizing the impact the reconfiguration has on service under mul-
tidimensional capacity constraints, although most of this paper considers the monodimensional case.
3. Complexity

In this section, we study the computational complexity of the PMP problem and show, perhaps not surpris-
ingly, that it is NP-hard in the strong sense.

Given a set of moves, say M, we focus on the decision problem, hereafter referred to as the Zero-Impact
Process Move Programming (ZIPMP) problem, which asks whether or not there exists a bijection
r : M ! f1; . . . ; jM jg such that for all m 2M
wm 6 Ktm þ
X

m02SðtmÞ
rðm0Þ<rðmÞ

wm0 �
X

m02T ðtmÞ
rðm0Þ<rðmÞ

wm0 : ð4Þ
Recall that the 3-partition problem is the decision problem which asks, given a set E of 3k items, an upper
bound W 2 N and a size s : E! N such that W

4
< sðeÞ < W

2
for all e 2 E and such that

P
e2EsðeÞ ¼ kW , whether

or not there exists a partition of E into k disjoint sets E1, . . . ,Ek such that for all 1 6 i 6 k
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X
e2Ei

sðeÞ ¼ W :
It is well known (see for example [12]) that the 3-partition problem is NP-complete in the strong sense.

Proposition 1. The ZIPMP problem is NP-complete in the strong sense, even for a system with only two

processors.

Proof. Let us consider a system composed of two processors, A and B, such that the set of process moves from
A to B, denoted MA, contains k � 1 moves which satisfy wm ¼ W 2 N and such that the set of process moves
from B to A, denoted MB, contains 3k moves satisfying W

4
< wm <

W
2

and
P

m2MB
wm ¼ kW . Additionally,

KA = W and KB = 0 (see Fig. 2).
All we need to prove is that the above instance is a yes-instance if and only if there exists a partition of MB

into k disjoint sets M1, . . . ,Mk such that for all 1 6 i 6 k
X
m2Mi

wm ¼ W : ð5Þ
First suppose that such a partition does exist. It is then easy to construct a solution by first performing all the
moves in any one of the Mi (this is possible since KA = W) and this frees enough room on processor B to per-
form any one of the moves in MA. After performing this step k � 1 times, all the moves in MA have been per-
formed, so have the moves in all but one of the Mi’s and there are W free units on A. Hence, by Eq. (5), the
moves in the last of the Mi’s are possible.

Conversely, let us suppose that such a partition does not exist. Let k 0 denote the greatest integer such that
there exists M1, . . . ,Mk0 disjoint sets which satisfy Eq. (5) for all 1 6 i 6 k 0. Necessarily k 0 < k � 1 (otherwise
the non-existence assumption is falsified), hence it is possible to realize k 0 of the k � 1 moves in MA. Then W

free units are available on A but since there exists no more set satisfying Eq. (5) it is only possible to transfer
less than W units from B to A, it is therefore impossible to free enough room on B to perform another of the
remaining moves in MA.

Hence, the 3-partition problem can be solved by an algorithm able to solve the ZIPMP problem. The NP-
completeness of the latter problem therefore follows by restriction to the 3-partition problem, itself NP-
complete in the strong sense. h

The strong NP-hardness of the PMP problem directly follows from the above proposition. As a conse-
quence, there neither exists a polynomial nor a pseudopolynomial algorithm for the PMP problem unless
P = NP.

Lastly, it is interesting to note that the complexity result in [6,7] implies that the PMP problem remains
strongly NP-hard even when the digraph underlying the instance is asymmetric i.e., when there is at most
one process to transfer in between each (unordered) pairs of processors.
C

4W

W

W

W

W

Proc. BProc. A

Fig. 2. Illustration of the kind of instances considered in the proof of Proposition 1.
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4. Polynomially solvable special cases

This section is devoted to the study of two polynomially solvable special cases of the PMP problem.
To avoid any ambiguities we first recall a few basic notation and definitions regarding directed graphs. This

terminology is borrowed from Bang-Jensen and Gutin [3]. Let D = (V,A) denote a directed multigraph (that is
parallel arcs are allowed but loops are forbidden). For a vertex v 2 V, NþDðvÞ, N�DðvÞ, dþDðvÞ and d�DðvÞ respec-
tively denote the out-neighbourhood (that is the set of vertices dominated by v), the in-neighbourhood (that is the
set of vertices which dominate v), the out-degree (that is the number of arcs with tail v) and the in-degree (that
is the number of arcs with head v) of v. A walk is an alternating sequence of vertices and arcs, say
v1a1v2a2v3 . . . vn�1an�1vn, such that for 1 6 i < n the tail of ai is vi and the head of ai is vi+1. A closed walk is
a walk such that v1 = vn, a trail is a walk in which all arcs are distinct, a path is a trail in which all vertices
are distinct and a directed cycle is a closed trail in which all vertices but the first and last are distinct (for short,
the term cycle is used in the sequel).

Let M denote the set of process moves. To an instance of the PMP problem we associate a directed mul-
tigraph, denoted D and called the transfer multigraph, whose vertices are associated to the processors and such
that an arc (sm, tm) is associated to each move m 2M. Given a transfer multigraph we also define the transfer

digraph, denoted eD, as the directed graph obtained by contracting the parallel arcs in D.

4.1. Acyclic transfer digraphs

Our first concern is the case where the transfer multigraph is acyclic, without any constraint on the number
of resources. Recall that every acyclic multigraph has a topological ordering of its vertices, that is there exists a
bijection g : V ! f1; . . . ; jV jg such that g(v) < g(w) for all arcs (v,w) 2 A.

Proposition 2. If D is acyclic, a zero-impact process move program exists and can be found in linear time.

Proof. By definition of a topological ordering g�1(jVj) has no out-neighbour. Equivalently, S(g�1(jVj)) = ;.
Hence Eq. (3) becomes
X

m2T ðg�1ðjV jÞÞ
wm 6 Kg�1ðjV jÞ;
which means that all the moves which target g�1(jVj) are possible.
Let 1 6 i < jVj, then, for all j such that i < j 6 jVj, assume that the moves in T(g�1(j)) have been performed

and that the corresponding arcs have been removed from D. Since, by definition of a topological ordering,
g�1(i) can dominate only vertices g�1(j) with i < j, there is no arc with tail g�1(i) left in D. Equivalently, there
remains no move with g�1(i) as source. Therefore, by Eq. (3), all the moves in T(g�1(i)) can be performed and
the corresponding arcs can be removed from D.

The claim follows from the well-known fact that a topological ordering can be obtained in linear time (e.g.,
[3]). h

Fig. 3 illustrates the resolution method. A topological ordering is (5, 2,7,6,1,8,3,4), so the first set of moves
performed (in an arbitrary order) is the set of moves which target vertex 4, then the move which targets vertex
3 is performed and so on.
4

3

8

6

5

1

7

2

3
6

4

5

4

3

3
2

1
1 5

Fig. 3. Illustration of the resolution method for the acyclic case.
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When D contains some cycles, it is still possible to derive a partial ordering of the process moves by looking
at the strongly connected components of D. Recall that a directed multigraph is strongly connected either if
jVj < 2 or if it contains a path from v to w and from w to v for each pair of distinct vertices v and w and that the
strongly connected components of a directed multigraph are its maximal strongly connected subdigraphs.

Indeed, the following proposition suggests that the strongly connected components of D should be consid-
ered independently and in reverse topological order.

Proposition 3. Let C1, . . . ,Cn denote the strongly connected components of D (assumed topologically ordered).

Assume that given 1 < i 6 n the moves having both their source and target in
Sn

j¼iþ1Cj have been performed and
that the corresponding arcs have been removed from D. Then a process move program which first schedules the

moves having their source in Ci and target not in Ci, then the moves internal to Ci followed by the remaining moves,

dominates any other program not satisfying this property.

Proof. Since all the moves having both their source and target in
Sn

j¼iþ1Cj have been performed the vertices
targeted by the moves having their source in Ci and target not in Ci are left without any out-neighbour. Hence,
these moves are possible and performing such a move frees some resources on one of the vertices of Ci there-
fore easing the realization of the moves internal to Ci.

So assume that the moves having their source in Ci and target not in Ci have been performed. Performing a
move, say m, having its source in [i�1

j¼1Cj and target in Ci consumes some resources on one of the vertices of Ci.
Hence, doing so before performing the moves internal to Ci can only harden the realization of these moves.
Additionally, m is guaranteed to become possible after the moves internal to Ci have been either performed or
interrupted (since the vertices in Ci are then left without out-neighbour).

Lastly, the realization of a move internal to [i�1
j¼1Cj can be postponed as the realization of such a move

neither eases nor hardens the realization of the moves internal to Ci and reciprocally. h

Fig. 4 illustrates the decomposition principle implied by the above proposition. First the moves targeting
vertex 2 are performed in an arbitrary order, then the move targeting vertex 10, then the moves internal to
A, then the moves targeting vertices of A with their source in B, and so on.

Corollary 1. Let C1, . . . ,Cn denote the strongly connected components of D (assumed topologically ordered), a

process move program which interrupts a move such that sm 2 Ci and tm 2 Cj with i 5 j is dominated.
4.2. The homogeneous case

We now turn to the case where the consumption of each of the processes is equal to a constant, supposed
equal to 1 without loss of generality.

Recall that a directed multigraph is eulerian if it is connected and if d+(v) = d�(v) for all v 2 V and that such
a multigraph possesses an eulerian tour, that is a closed trail which uses every arc exactly once.

First we have the following proposition.

Proposition 4. If D is eulerian then the homogeneous case can be solved in linear time.
10

2

12

6

5

11

1

4

3

7

9

8 C

B

A

Fig. 4. Illustration of the decomposition principle implied by Proposition 3.



R. Sirdey et al. / European Journal of Operational Research 183 (2007) 546–563 553
Proof. If there exists a processor u 2 U such that Ku P 1 then a zero-impact process move program is
obtained by performing the moves in the reverse order of an eulerian tour on D, starting with any of the moves
targeting u.

Otherwise, any one move m such that cm ¼ minm02M cm0 is interrupted and, since this frees one unit on sm, the
remaining moves can be performed in the reverse order of an eulerian tour on D, starting with any of the
moves targeting sm and preceding m in the eulerian tour.

The claim follows from the well-known fact that an eulerian tour can be obtained in linear time (e.g.,
[3]). h

We now suppose that D is strongly connected and not eulerian and demonstrate that in this case a
zero-impact process move program exists and can be found in polynomial time. We do so by studying
Algorithm 1.

Algorithm 1. An algorithm for the homogeneous case when D is strongly connected and non-eulerian.
While V 5 ;
Let C denote the set of vertices in the last of the (topologically ordered) strongly connected compo-
nents of D.
(a) If C contain only one vertex, say v, then perform all the moves targeting v in an arbitrary order,
remove them from M, remove the corresponding arcs from A and remove v from V.
(b) Else choose a vertex, say v0, in C whose remaining capacity is non-zero and a maximal eulerian
subdigraph rooted at v0, perform the moves in the subdigraph in the reverse order of an eulerian
tour, removing them from M and removing the corresponding arcs from A.

End.
Lemma 1. The moves performed at step (a) of Algorithm 1 are possible.

Proof. The first time the loop is executed we have C = D and, hence, no move satisfies the premises of step (a).
Otherwise, when D is no more strongly connected, v is left without any out-neighbour. Hence, Eq. (3)

implies that all the moves which target v are possible. h

Lemma 2. The first time step (b) of Algorithm 1 is executed, there exists a vertex v0 in C such that Kv0
> 0.

Proof. The first time step (b) of the algorithm is executed we have C = D. Since D is not eulerian there exists v0

such that d+(v0) 5 d�(v0). So either d+(v0) < d�(v0) or d+(v0) > d�(v0) in which case since
dþðv0Þ þ

P
v 6¼v0

dþðvÞ ¼ d�ðv0Þ þ
P

v 6¼v0
d�ðvÞ we have

P
v 6¼v0

dþðvÞ <
P

v 6¼v0
d�ðvÞ and, by the pigeon-hole prin-

ciple, there exists a vertex, say v00 such that dþðv00Þ < d�ðv00Þ. By Eq. (3), a vertex such that d+(v0) < d�(v0) is
such that Kv0

P d�ðv0Þ � dþðv0Þ > 0. h

Lemma 3. Each time step (b) of Algorithm 1 is executed, there exists a vertex v0 in C such that Kv0
> 0.

Proof. A strongly connected component is said to be terminal if it has no out-neighbour.
The lemma is established by demonstrating that, each time the loop is executed, the terminal strongly

connected components of the remaining transfer multigraph either contain one vertex or contain a vertex, say
v0, such that Kv0

> 0.
Lemma 2 proves that it is initially the case.
Assume this is true at a given iteration of the algorithm.
Then if step (a) is executed new terminal strongly connected components may appear but all of these

components are such that there exists a vertex v0 with Kv0
> 0 (regardless of their cardinality). This is so

because for each of the newly introduced components at least one move having its source and target
respectively in and not in the component has been performed.
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If step (b) is executed, then new terminal strongly connected components may appear but they all contain
only one vertex. This is so because assuming otherwise would contradict the fact that the removed eulerian
subdigraph was maximal for it would mean that at least one cycle encounters at least one vertex of the
subdigraph. h

The following proposition is an immediate consequence of Lemmas 1 and 3.

Proposition 5. If D is non-eulerian and strongly connected, Algorithm 1 outputs a zero-impact process move

program.

We are now able to solve the homogeneous case.

Corollary 2. Assume that D is connected3 then, unless D is eulerian and Ku = 0 for all u 2 U, a zero-impact

admissible process move program exists and can be found in polynomial time.

Proof. If D is eulerian then we proceed as in the proof of Proposition 4. So let us assume that D is connected
and not eulerian and let C1, . . . ,Cn denote its strongly connected components (topologically ordered). Algo-
rithm 1 considers the strongly connected components of D as implied by Proposition 3. Assume that jCnj > 1.
If the transfer multigraph, say D0n, associated to the moves internal to Cn is not eulerian then Proposition 5
shows how to find a zero-impact process move program. Otherwise if D0n is eulerian then dþD0nðvÞ ¼ d�D0nðvÞ
for all vertices of D0n however since D is connected then at least one vertex in Cn, say v0, is the head of an
arc whose tail is not in Cn it follows that d�Dðv0Þ > dþDðv0Þ and, hence, that Kv0

> 0. This provides a vertex from
which an eulerian tour can be started.

When the moves internal to Ci (i < n, jCij > 1) are considered then, since D is connected, at least one move
with source in Ci and target not in Ci has been performed, therefore ensuring that one unit of load is free on at
least one of the vertices of Ci. Let D0i denote the transfer digraph associated to the moves internal to Ci. It
follows that a zero-impact process move program is given either by an eulerian tour (if D0i is eulerian) or by
Proposition 5 otherwise.

The claim follows from the fact that Algorithm 1 is clearly polynomial. h

Fig. 5 illustrates the functioning of the algorithm. Initially, a maximal eulerian subdigraph rooted at 2 is
chosen (dashed arcs). This is so because d+(2) < d�(2). The moves are then performed in the reverse order
of an eulerian tour on the subdigraph. After, this initial step, the remaining graph has two connected compo-
nents ({2, 3} and {4,5,7,8}) which can be considered independently. The latter is considered first on the exam-
ple. It has 3 strongly connected components ({4}, {7,8} and {5}, in topological order). So {5}, the last, is
considered first and the move from 8 to 5 is scheduled, which frees one unit on 8 which is chosen as the root
of the small maximal eulerian subdigraph (7 could have been chosen as well because d+(7) < d�(7)). The
remaining graph is acyclic so we are done.
3 If this assumption is not satisfied, then the argument can be repeated for each of the connected components of D.
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5. A branch-and-bound algorithm

In this section, we present a branch-and-bound algorithm for the PMP problem. The algorithm initially
starts with the worst possible solution, which consists in interrupting all the moves. Then an admissible pro-
gram is built, each branching decision consisting in choosing an interrupted process to concatenate to the pro-
gram ordering, among those for which doing so preserves the admissibility of the program. A leaf is obtained
when no such process exists. This scheme is complemented by a lower bound as well as dominance relations.

We first describe each of the algorithm building blocks separately and then sketch how to integrate them in
a practical branch-and-bound algorithm. Section 6 reports on computational results.

5.1. Branching scheme

A node of the search tree is denoted by as a quadruplet N = (I,J,rJ,R) where I, J and R respectively denote
the sets of moves which are interrupted, ordered or yet neither interrupted nor ordered and where
rJ : J ! f1; . . . ; jJ jg is an ordering of the moves in J.

For such a quadruplet to define an admissible node, it is required that the sets I, J and R are both mutually
exclusive (that is I \ J = I \ R = J \ R = ;) and collectively exhaustive (i.e., I [ J [ R = M) as well as for
(I [ R,rJ) to be an admissible process move program. Stated in plain English, this latter requirement expresses
the fact that as long as the moves in I [ R are interrupted, the moves in J can be performed according to rJ

without inducing any violation of the capacity constraints.
Given a node N and a processor u, let
‘uðNÞ ¼ min
i¼1;...;jJ j

Ku þ
X

m2SðuÞ\ðI[RÞ
wm þ

X
m2SðuÞ\J
rJ ðmÞ6i

wm �
X

m2T ðuÞ\J
rJ ðmÞ6i

wm

0
BB@

1
CCA ð6Þ
and
LuðNÞ ¼ Ku þ
X

m2SðuÞ
wm �

X
m2T ðuÞ\J

wm: ð7Þ
Informally, ‘u(N) is the minimum remaining capacity of u during the execution of (I [ R,rJ) and Lu(N) is the
remaining capacity of u after the execution of (I [ R,rJ).
Proposition 6. Let N = (I,J,rJ,R) be a node of the search tree and let m 2 R, if wm 6 ‘smðNÞ then

N 0 = (I,J [ {m},rJ[{m},Rn{m}) is an admissible node for the search tree, where rJ[{m} is an ordering of the

moves in J [ {m} such that rJ[{m}(m
0) = rJ(m 0) for all m 0 2 J and rJ[{m}(m) = jJj + 1.

Proof. By definition of ‘u, the fact that wm 6 ‘smðNÞ implies that the process associated to m can remain on sm

during the entire execution of the program (I [ R,rJ). After its execution, the remaining capacity on tm is equal
to
LtmðNÞ ¼ Ktm þ
X

m02SðtmÞ
wm0 �

X
m02T ðtmÞ\J

wm0
and, from Eq. (3), we have
Ktm þ
X

m02SðtmÞ
wm0 �

X
m02T ðtmÞ\J

wm0 P
X

m02T ðtmÞ\ðI[RÞ
wm0 P wm:
Hence, after all the moves in J have been performed, there is enough capacity on tm to host the process asso-
ciated to m. h

Note that the following relationships hold
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‘smðN 0Þ ¼ ‘smðNÞ � wm; ð8Þ

LtmðN 0Þ ¼ LtmðNÞ � wm; ð9Þ

‘tmðN 0Þ ¼ minð‘tmðNÞ; LtmðN 0ÞÞ: ð10Þ
Our branching scheme can then be stated as follows. The root node is (;,;,r;,M) and is associated to the
process moves program (M,r;) which interrupts all the moves. At a node N = (I,J,rJ,R) of the search tree, let
I 0 ¼ fm 2 R : wm > ‘smðNÞg. By definition of ‘u, a process associated to a move m in I 0 cannot remain on sm

during the execution of (I [ R,rJ) without inducing a violation of the capacity constraints. Hence, a move
in I 0 cannot be added to J and concatenated to rJ, and it will remain so in the branch rooted at N since ‘u

is a non-increasing function of jJj (from Eqs. (8) and (10)). It follows that for each m 2 RnI 0 the nodes
N 0 = (I [ I 0,J [ {m},rJ[{m},Rn(I 0 [ {m})) are generated.

Hence, when branching from a node, the number of ordered moves is increased by one whereas the number
of interrupted moves is increased by a number in {0, . . . , jRj � 1}.

5.2. Lower bounds

At a node N = (I,J,rJ,R), let KP(u) denote the value of an optimal solution to the following knapsack
problem
Maximize
P

m2SðuÞ\R
cmxm ð11aÞ

s:t:
P

m2SðuÞ\R
wmxm 6 ‘uðNÞ; ð11bÞ

xm 2 f0; 1g;m 2 SðuÞ \ R:

8>>><
>>>:

ð11Þ
We refer the reader to Kellerer et al. [17] for details regarding the knapsack problem.

Proposition 7. A lower bound on the values of the solutions which can be obtained by exploring the branch rooted
at N is provided by
LBðNÞ ¼
X
m2I

cm þ
X
u2U

LBðuÞ; ð12Þ
where LB(u) = Wu � KP(u) and W u ¼
P

m2SðuÞ\Rcm.

Proof. Since ‘u is a non-increasing function of jJj, the sum of the weights of the moves in R \ S(u) which can
further be concatenated to rJ cannot exceed ‘u. This is captured in the knapsack constraint (11b). Hence,
KP(u) provides an upper bound on the sum of the costs of the moves in R \ S(u) which can further be con-
catenated to rJ. h

Fortunately, the knapsack problem is one of the easier NP-hard problems (see [19] for a recent survey
regarding the relative easiness of the knapsack problem) and, in particular, it can be solved in pseudopolyno-
mial time. For example, lower bound (13) can be obtained in O

P
u2U j SðuÞ \ R j ‘uðNÞ

� �
using the well-known

Bellman recursion [5]. Moreover, if the results of the individual knapsack problems are memorized at each
depth, computing the bound at a given depth requires solving only two knapsack problems: one for the source
and one for the target processor of the last move in the schedule.

When the size of the coefficients prevents the use of dynamic programming, a tight upper bound on KP(u)
can be obtained using any FPTAS4 for the knapsack problem leading to a slightly weaker lower bound (see for
example [16]).
call [17] that given e2]0,1[, an e-approximation scheme for a maximization problem is an algorithm which produces solutions of
reater than or equal to (1 � e)OPT(I) for all instances I of the problem. A Fully Polynomial Time Approximation Scheme (FPTAS)
-approximation scheme whose running time is polynomial in the natural size of the instance as well as in 1

e.
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Also, computationally cheaper, but weaker, lower bounds can be obtained from any upper bound for prob-
lem, the so-called Dantzig bound obtained by solving the linear relaxation of the knapsack problem would be
an example. Note that when cm = wm, problem becomes a subset sum problem leading to the following lower
bound
LB0ðNÞ ¼
X
m2I

wm þ
X
u2U

maxð0;W u � ‘uðNÞÞ:
Lastly, LB(N) can be generalized to the multiple resource case. Problem then becomes a multidimensional
knapsack problem which is still reasonable to tackle using dynamic programming for a small enough number
of resources (say less than or equal to 3). When the number of resources increases, however, it is likely that
only upper bounds on KP(u) will be available. The reader is referred to Kellerer et al. [17] for details on how to
solve the multidimensional knapsack problem using dynamic programming as well as on how to obtain upper
bounds.

5.3. Dominance relations

The following lemma is stated without proof.

Lemma 4. If a P c and b P d then min(a, b) P min(c, d).

Proposition 8. Let N 1 ¼ ðI1; J 1; rJ1
;R1Þ and N 2 ¼ ðI2; J 2; rJ2

;R2Þ be two nodes of the search tree, then N1 dom-

inates N2 if the following conditions hold:

1. R1 = R2 = R.
2.
P

m2I1
cm 6

P
m2I2

cm.

3. Lu(N1) P Lu(N2), "u 2 U.

4. ‘u(N1) P ‘u(N2), "u 2 U.
Proof. Let NH

2 ¼ ðI2 [ IH; J 2 [ JH; rJ2[JH ; ;Þ denote the best leaf of the branch rooted at N2 and let
m ¼ r�1

J2[JHðj J 2 j þ1Þ (assuming jJ%jP 1).

Let N ðmÞ2 ¼ ðI2; J2 [ fmg; rJ2[fmg;R n fmgÞ, since ‘u(N1) P ‘u(N2) for all u 2 U the node
N ðmÞ1 ¼ ðI1; J1 [ fmg; rJ1[fmg;R n fmgÞ is admissible. Using Condition 4 and Eq. (8) we have
‘smðN
ðmÞ
1 Þ ¼ ‘smðN 1Þ � wm P ‘smðN 2Þ � wm ¼ ‘smðN

ðmÞ
2 Þ:
Using Condition 3 and Eq. (9) we have
LtmðN
ðmÞ
1 Þ ¼ LtmðN 1Þ � wm P LtmðN 2Þ � wm ¼ LtmðN

ðmÞ
2 Þ: ð13Þ
Lastly, using Condition 4, Eqs. (10) and (13) as well as Lemma 4 we have
‘tmðN
ðmÞ
1 Þ ¼ minð‘tmðN 1Þ; LtmðN

ðmÞ
1 ÞÞP minð‘tmðN 2Þ; LtmðN

ðmÞ
2 ÞÞ ¼ ‘tmðN

ðmÞ
2 Þ:
Hence, for all u 2 U we have LuðN ðmÞ1 ÞP LuðN ðmÞ2 Þ as well as ‘uðN ðmÞ1 ÞP ‘uðN ðmÞ2 Þ.
The above argument can be applied iteratively until the node NH

1 ¼ ðI1; J1 [ JH; rJ1[JH ; IHÞ is obtained.
Then the best leaf of the branch rooted at N1 has value at most equal to
X

m2I1

cm þ
X
m2II

cm;
which is, by Condition 2, smaller than or equal to
P

m2I2
cm þ

P
m2II cm. h

The dominance relation of Proposition 8 generalizes several other relations.
Provided that many equivalent total orderings of a set of non-interrupted moves can be obtained by

combining a given set of per-processor orderings, it is expected that a significant amount of redundancy
can be removed from the search tree by considering the following special case of the dominance relation of
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Proposition 8. Consider two nodes N 1 ¼ ðI ; J ; rð1ÞJ ;RÞ and N 2 ¼ ðI ; J ; rð2ÞJ ;RÞ. If rð1ÞJ and rð2ÞJ are such that,
for all u 2 U, the ordering of the moves in J \ (S(u) [ T(u)) induced by rð1ÞJ is equivalent to the one induced
by rð2ÞJ then N1 dominates N2 and reciprocally. This is so because Lu(N1) = Lu(N2) and ‘u(N1) = ‘u(N2) for all
u 2 U.

The strong-connectivity-based dominance relation discussed in Section 4.1 is also taken into account by the
rule of Proposition 8. For example, consider two nodes N 1 ¼ ðI ; J ; rð1ÞJ ;RÞ and N 2 ¼ ðI ; J ; rð2ÞJ ;RÞ. Then for
i = 1, . . . , jJj let m ¼ rð1Þ�1

J ðiÞ and let Cn � U denote the last (topologically ordered) strongly connected com-
ponent of the transfer digraph induced by the moves in {m 0 2 J : r(m 0) P i}. Assuming that rð1ÞJ and rð2ÞJ induce
equivalent orderings of the moves in Cn, if m is always internal to Cn when jCnj > 1 then we have Lu(N1) =
Lu(N2) as well as ‘u(N1) P ‘u(N2) for all u 2 U. Hence N1 dominates N2.

5.4. Subproblem selection

Subproblem selection is performed in a greedy fashion. At a node N = (I,J,rJ,R) of the search tree, the
immediate profit associated to the decision of using a move m 2 R such that wm 6 ‘smðNÞ for branching is
defined as
pm ¼ cm � ðW s �KPs � LBðsmÞÞ � ðW t �KPt � LBðtmÞÞ;

where W s ¼

P
m02SðsmÞ\Rnfmgcm0 , W t ¼

P
m02SðtmÞ\Rcm0 and where KPs and KPt respectively denote the value of an

optimal solution to knapsack problems
Maximize
P

m02SðsmÞ\Rnfmg
cm0xm0

s:t:
P

m02SðsmÞ\Rnfmg
wm0xm0 6 ‘smðNÞ � wm;

xm0 2 f0; 1g; m0 2 SðsmÞ \ R n fmg

8>>>>><
>>>>>:
and
Maximize
P

m02SðtmÞ\R
cm0xm0

s:t:
P

m02SðtmÞ\R
wm0xm0 6 minð‘tmðNÞ; LtmðNÞ � wmÞ;

xm0 2 f0; 1g; m0 2 SðtmÞ \ R:

8>>><
>>>:
The right-hand sides of the capacity constraints of the above two problems are justified by Eq. (8) as well as (9)
and (10), respectively.

Hence, the increment in the lower bound is taken into account when evaluating branching decisions, the
moves inducing the biggest immediate profits being used for branching first.

Note that this subproblem selection scheme can be used as the basis of a simple pseudopolynomial greedy
algorithm for the PMP problem.

5.5. Putting it all together

We have implemented a DFS branch-and-bound algorithm based on the ideas discussed in the previous
sections, namely lower bound (13), the dominance relations of Proposition 8 as well as the subproblem selec-
tion strategy of Section 5.4.

The resolution of the knapsack problems involved in both the calculation of lower bound (13) and the sub-
problem selection scheme is performed using the Bellman Algorithm (see for example [17]).

The exploitation of the dominance relation of Proposition 8 deserves more comments.
Indeed, there are three main ways of exploiting dominance relations within a branch-and-bound algorithm:

1. Exclude a node from consideration if it is dominated by a node which has already been considered (e.g.,
[15]).
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2. Exclude a node from consideration if there exists a node which dominates it, regardless of whether or not the
latter has already been considered (e.g., [4]).

3. Replace a node by another node which dominates it, if such a node exists and can be found (e.g., [8]).

All of these strategies have pros and cons. Strategy 1 requires memorizing (at least partially) the set of
nodes considered so far and may result in the exploration of redundant branches: for example if the branching
procedure considers N1 before N2 and if N2 dominates N1. Strategy 2 does not require memorizing the set of
nodes considered so far (as long as the dominance relation has been supplemented so as to guarantee unicity)
but may result in delaying the improvement of the upper bound: for example if the branching procedure con-
siders nodes N1, N2 and N3 (in that order) and if N3 dominates N1 then the algorithm explores only the
branches rooted at N2 and N3 it is however possible that exploring the branch rooted at N1 improves the upper
bound enough so that there is no need to consider N2, so it comes down to whether it is computationally more
interesting to explore the branch rooted at N1 and the branch rooted at N3 (despite of the fact that it is known
to be redundant) or the branches respectively rooted at N2 and N3. Lastly, strategy 3 requires memorizing (at
least partially) the set of nodes considered so far but, thanks to the fact that replacement is performed, it
avoids both redundancy and delayed upper bound improvement, it however requires being able to find dom-
inating nodes from a given node and this problem might be as hard as the problem the branching procedure is
solving.

As long as the memory is managed efficiently, memorizing the set of nodes considered so far is not an issue:
if the branching procedure is to succeed it must not consider too many nodes and workstations nowadays usu-
ally have fairly huge amounts of memory. Additionally, it should be emphasized that the branching procedure
discussed in this paper is not destined to be embedded in a real-time system, see the discussion in Section 7.

On empirical grounds, strategy 1 appears to be the most suited to exploit the dominance relation of Prop-
osition 8. This is performed using a balanced binary search tree (see for example [18]) keyed on the binary
representation of the set R of a node N = (I,J,rJ,R), each key being associated to a list of triplets
{c(N),L(N), ‘(N)}. When a node is considered, the list associated to R is searched for a triplet which dominates
the node. If such a triplet is found the branch rooted at the node is pruned. Otherwise, the branch is explored.
Then the list is searched for triplets which are dominated by the triplet associated to the node, which are
removed, and the latter is added at the front of the list.

6. Computational experiments

In this section, we report on computational experiments carried out so as to assess the practical relevance of
the branch-and-bound algorithm of Section 5. These experiments have been performed on a Sun Ultra 10
workstation with a 440 MHz Sparc microprocessor, 512 MB of memory and the Solaris 5.8 operating system.

6.1. Instance generation

Given U the set of processors, C the processor capacity and W an upper bound on the process consump-
tion, an instance is generated as follows.

First, the set of processes is built by drawing consumptions uniformly in {1, . . . ,W} untilP
p2P wp P C j U j. The initial state, fi, is then generated by randomly assigning the processes to the processors:

the processor to which a process is assigned is drawn uniformly from the set of processors whose remaining
capacity is sufficient (note that not all processes necessarily end up assigned to a processor). The final state, ft,
is built in the very same way with the exception that only the processes which are assigned to a processor in the
initial state are considered. An instance is considered valid only if all the processes assigned to a processor in
the initial state are also assigned to a processor in the final state. Invalid instances are discarded and the con-
struction process is repeated until a valid instance is obtained (the rejection rate depends on the parameters, as
an example, coarse estimates for jUj = 10, C = 100 as well as W = 10 and W = 50 respectively are 29% and
41%). The set of moves is then built as explained in Section 1.

It should be emphasized that the above scheme generates instances for which the capacity constraints are
extremely tight, instances which can be expected to be hard and, in particular, significantly harder than those



Table 1
Illustration of the performance impact of each of the algorithm components on a small set of moderate size instances (5 processors of
capacity 100, processes weights drawn uniformly in {1, . . . ,40})

N. jMj OPT LB Dom. LB & dom.

#nodes #nodes #keys #items #nodes #keys #items

01 22 6 >18,500,000 >15,900,000 >316,729 >606,958 177,542 6738 7905
02 21 17 16,647,308 >15,500,000 >224,009 >454,493 189,618 7255 11,178
03 16 23 12,726 319,552 8905 16,232 2679 220 244
04 20 10 575,391 >16,100,000 >210,796 >510,507 34,829 2093 2573
05 17 26 1,243,750 488,432 10,821 22,253 23,635 1354 1968
06 19 25 265,197 13,217,379 136,421 480,749 29,891 1808 2162
07 18 5 14,972,721 5,876,920 66570 153,435 55,209 2685 4116
08 23 23 >23,600,000 >15,000,000 >334,966 >627,169 457337 18783 24,298
09 20 19 1,526,411 >15,700,000 >215,828 >481,464 55,045 2996 3611
10 17 47 143,800 1,609,022 38,846 86,350 25,814 1475 1971
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occurring in practice. As an example, for jUj = 10, C = 100 and W = 10 only 1.28% of free capacity remains,
on average, on each of the processors. However, for the system to which this work is to be applied (see [22]) the
maximum theoretical load of a processor ranges (nonlinearly) from at most 50% (for a system with 2 proces-
sors) to at most around 93% (for a system with 14 processors, which is the maximum). This is so because some
spare capacity is provisioned for fault tolerance purpose and this spare capacity is spread among all the pro-
cessors. Additionally, it should be stressed that the system carries at most 100 processes and that a preprocess-
ing technique, based on the fact that the properties of a system state are invariant by a permutation of the
processors, is used to decrease the number of moves by around 25% on average. It turned out that our algo-
rithm was able to solve virtually all practical instances within a few seconds and that, as a consequence, we had
to design more aggressive instance generation schemes, such as the above, in order to push the algorithm to its
limits.

Lastly, we have supposed that cm = wm, which is quite natural for our application as it is reasonable to
assume that the amount of service provided by a process is proportional to the amount of resources it
consumes.
6.2. Influence of the algorithm building blocks

For a small set of moderate size instances generated using the scheme of Section 6.1, Table 1 provides the
number of nodes explored by the algorithm (‘‘#nodes’’), the number of entries in the binary search tree dis-
cussed in Section 5.5 (‘‘#keys’’) as well as the total number of items stored in it5 (‘‘#items’’), that is the sum
over the set of entries of the length of the associated list, when only the lower bound is activated (column
‘‘LB’’), when only the dominance relation is activated (column ‘‘Dom.’’) and when both the lower bound
and the dominance relation are activated (column ‘‘LB & Dom.’’).

Table 1 illustrates that both the lower bound and the dominance relations significantly contribute to the
reduction of the search space. It also illustrates the fact that the size of the data structure used to exploit
the dominance relation grows mildly with the number of nodes.
6.3. Computational results

In order to reasonably explore the (practically relevant part of the) problem space we have used the scheme
of Section 6.1 to generate a set of 10 instances for each jUj 2 {2, . . . , 14},6 each W 2 {10,20, . . . ,90,100} and
5 Because this quantity is measured at the end of the execution of the algorithm it provides only an order of magnitude. This is so
because the algorithm tries to remove dominated triplets from a list each time a new triplet is added, as explained in Section 5.5.

6 The choice for the values of jUj is motivated by the fact that the system to which this work is to be applied contains at least 2 and at
most 14 processors [22].
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C = 100. Hence a total of 1300 instances, amongst which only 1020 were considered of non-trivial size (from
around 10 up to 254 moves). For each of these sets of 10 instances, Table 2 indicates the average problem size
(i.e., the average number of moves), denoted jM j, as well as the number of instances in the set that the algo-
rithm has been able to solve in less than 20 min, denoted n. Additionally, Table 3 provides for each value of
jUj, the size of the biggest instance the algorithm was able to solve in less than 20 min, the size of the smallest
instance the algorithm was not able to solve in less than 20 min as well as the size of the biggest instance on
which the algorithm was tried.

Our intent, in performing this experiment, has been to obtain an idea, when the capacity constraints are
extremely tight, on the kind of instances which are within the reach of the algorithm in a relatively short time
for practically relevant values of jUj.

In the range 5 6 jUj 6 12 the algorithm is able to solve most instances of size below or slightly above 40,
generally in a fairly small fraction of the 20-min limit. In this range, the algorithm is also able to solve a bunch
of fairly big instances, culminating in the resolution of an instance with 11 processors and 190 moves in a bit
more than 3 min.

Instances in the range 2 6 jUj 6 4 appear to be more difficult. This is presumably due to the fact that the
difficulty ends up concentrated among the few processors. As an example, for jUj = 2, the algorithm failed to
solve an instance with 22 moves and took a bit more than 7 min to solve another instance with only 20 moves.
Table 2
Average instance size, denoted jM j, and number of instances solved in less than 20 min, denoted n, for each of the 10 instances sets
generated

W jUj 2 3 4 5 6 7 8

jM j n jM j n jM j n jM j n jM j n jM j n jM j n

10 17.3 9 37.3 1 54.4 4 73.1 2 86.8 4 110.1 4 125.8 2
20 8.2 10 19.5 10 26.7 9 35.0 4 46.7 6 56.5 4 64.1 2
30 6.4 10 12.9 10 19.5 10 23.9 10 30.4 9 37.2 8 44.6 3
40 9.9 10 12.5 10 19.3 10 22.9 10 28.1 9 33.9 8
50 10.6 10 12.9 10 19.5 10 22.0 10 25.9 10
60 13.2 10 14.6 10 18.1 10 21.4 9
70 13.3 10 15.2 10 18.6 10
80 11.9 10 15.4 10
90 12.9 10

9 10 11 12 13 14

10 150.1 2 159.2 0 179.5 3 198.5 0 215.8 0 237.6 0
20 75.6 3 82.1 5 92.5 1 102.6 0 111.1 0 122.4 0
30 47.2 5 56.7 2 64.6 2 71.2 1 77.5 0 80.6 0
40 37.3 7 45.7 3 48.0 4 51.6 3 56.8 3 58.6 2
50 30.1 8 33.5 8 37.8 5 41.8 4 43.7 5 53.0 0
60 25.8 9 29.5 6 29.2 8 31.8 8 35.3 6 40.8 1
70 22.1 9 23.2 9 25.7 8 28.1 9 32.2 4 36.3 4
80 17.3 10 19.0 10 21.2 9 25.1 9 25.5 10 28.4 5
90 16.3 10 18.9 9 20.8 10 23.6 10 22.8 8 26.4 7

100 12.8 10 15.8 10 17.9 10 18.2 10 19.6 9 22.7 9

Table 3
For each value of jUj, row ‘‘A’’ indicates the size of the biggest instances solved by the algorithm in less than 20 min, row ‘‘B’’ the size of
the smallest instance not solved by the algorithm in less than 20 min and row ‘‘C’’ provides the size of the biggest instance on which the
algorithm was tried

jUj 2 3 4 5 6 7 8 9 10 11 12 13 14

A 20 36 60 71 88 116 124 149 80 190 65 53 58
B 22 34 31 34 39 33 26 25 24 25 31 25 26
C 22 46 60 78 101 121 139 157 165 190 213 232 254
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Also, in the range 13 6 jUj 6 14, instances with extremely high cost optimal solutions start to appear. The
algorithm seems to have difficulties in dealing with these instances as it failed to close a few relatively small
instances (see Table 3) or required an important fraction of the allowed 20 min to solve a few other such
instances. As an example, an instance with 13 processors and 24 moves was solved in a bit more than
8 min, this instance required the interruption of nearly 16% of the moved payload. Having said that, the prac-
tical relevance of these instances may be challenged as systematically having instances with high cost optimal
solutions would be a con against embedding a reconfiguration procedure such as the present one within the
design of a system. At the end of the day, what really matters is whether or not the amount of payload usually
impacted by the reconfiguration is acceptable (typically below a few percent).

Lastly, it should be emphasized that when W is small enough (typically less than or equal to 30), small cost
solutions almost always exist and can be found by the algorithm, generally within a small fraction of the 20-
min limit. For example, with jUj = 14 and W = 10, the algorithm terminated with solutions situated, on
average, at less than 1.2% from an hypothetical zero cost solution (given a solution of value z, distance to opti-
mality was measured using the ratio dðzÞ ¼ z�OPT

S�OPT
, where OPT and S ¼

P
mcm respectively denote the value of

an optimal solution and of the worst possible one, which simply consists in interrupting all the moves,7 when
unknown OPT was replaced by a lower bound e.g., 0). Overall, on the set of instances with W 6 30 which the
algorithm failed to solved in less than 20 min, solutions situated, on average, at 2.07% from an hypothetical
zero cost solution were obtained.

Overall, 659 of the 1020 ‘‘hard’’ instances have been solved.

7. Conclusion

In this paper, we have introduced the Process Move Programming problem which consists, starting from an
arbitrary initial process distribution on the processors of a distributed system, in finding the least disruptive
sequence of operations (non-impacting process migrations or temporary process interruptions) at the end of
which the system ends up in another predefined arbitrary state. The main constraint is that the capacity of the
processors must not be exceeded during the reconfiguration. This problem has applications in the design of
high availability real-time distributed switching systems such as the one discussed in [22].

We have shown that the PMP problem is NP-hard in the strong sense and exhibited some polynomial spe-
cial cases, the most notable of which being the homogeneous case where all the processes have a constant con-
sumption in a unique resource.

We have proposed a branch-and-bound algorithm for the general case. From an industrial perspective, it
can be considered that the PMP problem is solved by this algorithm as it is able to close virtually all practical
instances within a few seconds. Additionally, we have performed computational experiments demonstrating
the algorithm’s perspective when used to solve instances significantly harder than those occurring in practice,
in terms both of size and tightness of the capacity constraints. Indeed, our algorithm was able to solve more
than 64% of our such test instances within a 20-min limit, including some instances with more than 100 moves.
Also, our experiments suggest that the truncated version of the algorithm has fairly reasonable heuristic
capabilities.

Nevertheless, our branch-and-bound procedure is not destined to be embedded in a real-time system. This
is so mainly because the behaviour of such an algorithm may be quite sensitive to changes in the kind of
instances it is asked to solve. Hence, the main purpose of our algorithm is to allow building a database of
instances with known optimal solutions so as to empirically assess the quality of the solution obtained using
efficient approximate resolution algorithms suitable for use in a real-time context. Efficient approximate res-
olution algorithms for the PMP problems are presently discussed in [21].
7 This measure is quite natural as 1 � d(z) can be interpreted either as a differential approximation ratio (recall that differential
approximation is concerned with how far the value of a solution is from the worst possible value [11]) or as a conventional approximation

ratio [12] for the maximization problem complementary to the PMP problem which asks to maximize the sum of the costs of the moves
which are not interrupted.
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