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Abstract This paper is devoted to the approximate solution of a strongly NP -hard
resource-constrained scheduling problem which arises in relation to the operability
of certain high availability real time distributed systems. We present an algorithm
based on the simulated annealing metaheuristic and, building on previous research on
exact solution methods, extensive computational results demonstrating its practical
ability to produce acceptable solutions, in a precisely defined sense. Additionally,
our experiments are in remarkable agreement with certain theoretical properties of
our simulated annealing scheme. The paper concludes with a short discussion on
further research.

Keywords Combinatorial optimization · Scheduling · Simulated annealing ·
Distributed systems · OR in telecommunications

1 Introduction

In this paper, we present a simulated annealing-based approximate solution algo-
rithm for the Process Move Programming (PMP) problem. This problem arises in
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relation to the operability of certain high-availability distributed switching systems.
For example (Sirdey et al. 2003), consider a telecom switch managing radio cells
on a set of call processing modules, hereafter referred to as processors, of finite ca-
pacity in terms of erlangs, CPU, memory, ports, etc.; each radio cell being managed
by a dedicated process running on some processor. During network operation, some
cells may be dynamically added, modified (transreceivers may be added or removed)
or removed, potentially leading to unsatisfactory resource utilisation in the system.
This issue is addressed by first obtaining a better system configuration and by subse-
quently reconfiguring the system, without violation of the capacity constraints on the
processors.

We now proceed with a formal definition of the problem.
Let us consider a distributed system composed of a set U of processors and let R

denote the set of resources they offer. For each processor u ∈ U and each resource
r ∈ R, Cu,r ∈ N denotes the amount of resource r offered by processor u. We are also
given a set P of applications, hereafter referred to as processes, which consume the
resources offered by the processors. The set P is sometimes referred to as the payload
of the system. For each process p ∈ P and each resource r ∈ R, wp,r ∈ N denotes
the amount of resource r which is consumed by process p. Note that neither Cu,r nor
wp,r vary with time. Also, when |R| = 1, Cu,r and wp,r are respectively denoted Cu

and wp (this principle is applied to other quantities throughout this paper).
An admissible state for the system is defined as a mapping f : P −→ U ∪ {u∞},

where u∞ is a dummy processor having infinite capacity, such that for all u ∈ U and
all r ∈ R we have

∑

p∈P(u;f )

wp,r ≤ Cu,r , (1)

where P(u;f ) = {p ∈ P : f (p) = u}. The processes in P̄ (f ) = P(u∞;f ) are not
instantiated, when this set is non empty the system is in degraded mode.

An instance of the Process Move Programming (PMP) problem is then specified
by two arbitrary system states fi and ft and, roughly speaking, consists in, starting
from state fi , finding the least disruptive sequence of operations at the end of which
the system is in state ft . The two aforementioned system states are respectively re-
ferred to as the initial system state and the final system state or, for short, the initial
state and the final state.1

Figure 1 provides an example of an instance of the PMP problem for a system with
10 processors, one resource and 46 processes. The capacity of each of the processors
is equal to 30 and the sum of the consumptions of the processes is 281. The top
and bottom figures respectively represent the initial and the final system states. For
example, process number 23 must be moved from processor 2 to processor 6.

A process may be moved from one processor to another in two different ways:
either it is migrated, in which case it consumes resources on both processors for the

1Throughout the rest of this paper, it is assumed that P̄ (fi ) = P̄ (ft ) = ∅. When this is not true the
processes in P̄ (ft ) \ P̄ (fi ) should be stopped before the reconfiguration, hence some resources are
freed, the processes in P̄ (fi ) \ P̄ (ft ) should be started after the reconfiguration and the processes in
P̄ (fi ) ∩ P̄ (ft ) are irrelevant.



Approximate solution of a resource-constrained scheduling 3

Fig. 1 Example of an instance of the PMP problem

duration of the migration and this operation has virtually no impact on service, or
it is interrupted, that is removed from the first processor and later restarted on the
other one. Of course, this latter operation has an impact on service. Additionally, it is
required that the capacity constraints (Eq. 1) are always satisfied during the reconfig-
uration and that a process is moved (i.e., migrated or interrupted) at most once. This
latest constraint is motivated by the fact that a process migration is far from being a
lightweight operation (for reasons related to distributed data consistency which are
out of the scope of this paper), as a consequence, it is desirable to avoid processes
hopping around processors.

Throughout this paper, when it is said that a move is interrupted, it is meant that
the process associated to the move is interrupted. This slightly abusive terminology
significantly lightens our discourse. Additionally, it is now assumed that |R| = 1,
unless otherwise stated.

For each processor u, a process p in P(u;fi) \ P(u;ft ) must be moved from u

to ft (p). Let M denote the set of process moves. Then for each m ∈ M , wm, sm and
tm respectively denote the amount of resource consumed by the process moved by
m, the processor from which the process is moved that is the source of the move and
the processor to which the process is moved that is the target of the move. Lastly,
S(u) = {m ∈ M : sm = u} and T (u) = {m ∈ M : tm = u}.
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A pair (I, σ ), where I ⊆ M and where σ : M \I −→ {1, . . . , |M \I |} is a bijection,
defines an admissible process move program, if provided that the moves in I are
interrupted (the interruptions are performed at the beginning) the other moves can be
performed according to σ without inducing any violation of the capacity constraints
(Eq. 1). Formally, (I, σ ) is an admissible program if for all m ∈ M \ I we have

wm ≤ Ktm +
∑

m′∈I
sm′=tm

wm′ +
∑

m′∈S(tm)\I
σ (m′)<σ(m)

wm′ −
∑

m′∈T (tm)\I
σ (m′)<σ(m)

wm′, (2)

where Ku = Cu − ∑
p∈P(u;fi)

wp , thereby guaranteeing that the intermediate states
are admissible.

Also note that because the final state is admissible, we have, for each processor
u ∈ U

Ku +
∑

m∈S(u)

wm −
∑

m∈T (u)

wm ≥ 0. (3)

Let cm denote the cost of interrupting m, the PMP problem then formally consists,
given a set of moves, in finding a pair (I, σ ) such that c(I ) = ∑

m∈I cm is minimum.
In Sirdey et al. (2005a) we have shown that the PMP problem is strongly NP -hard

(even for a system with only two processors and only one resource), exhibited some
polynomially solvable special cases (the most notable being |R| = 1 and wm = const
for all m ∈ M) as well as proposed a branch-and-bound algorithm for the general
case. This paper focuses on an approximate solution algorithm based on the simu-
lated annealing metaheuristic. Section 2 is dedicated to the theoretical considerations
at the basis of our algorithm: we introduce the notion of (α,β)-acceptable solution,
where β is a measure of distance to optimality and α is the probability that it is
achieved, and use the Markovian theory underlying the homogeneous simulated an-
nealing algorithm to derive conditions under which such solutions may be produced.
Based on these considerations, a simulated annealing-based pseudopolynomial time
approximation algorithm for the PMP problem is presented in Sect. 3. Building on
results obtained using the aforementioned branch-and-bound algorithm, we provide
in Sect. 4 extensive computational results demonstrating the practical relevance of the
method in the special case where cm = wm (this variant still is strongly NP -hard).

2 SA-based differential approximation

Simulated annealing is a popular approximate solution algorithm design paradigm
independently introduced in the mid eighties by Kirkpatrick et al. (1983) and Cerny
(1985). The main advantages of this paradigm are that it leads to relatively simple
algorithms and that it is reasonably well understood from a theoretical point of view.

Throughout this section, we consider a combinatorial optimization problem which
consists, given a finite set � = {ω1, . . . ,ωN } and an objective function c : � −→
{e1, . . . , eP }, in looking for an element ω� ∈ � such that e1 = c(ω�) ≤ c(ω) ≤ eP for
all ω ∈ �. Also, a neighbourhood function V : � −→ 2� is given.
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Algorithm 1 General form of the simulated annealing algorithm

Do T ← T0.
Choose ω uniformly in � and do ω� ← ω.
While the stopping criterion is not satisfied do:

Choose ω′ uniformly in V (ω).
Choose u uniformly in [0,1].
If u ≤ e− c(ω′)−c(ω)

T thena

Do ω ← ω′.
If c(ω) < c(ω�) then do ω� ← ω.

End.
T ← f (T ).

End.

aNote that e
− c(ω′)−c(ω)

T ≥ 1 when c(ω′) ≤ c(ω)

Algorithm 1 states the simulated annealing algorithm in a fairly general form. T0
is the initial temperature and f (usually2) is a nonincreasing function referred to as
the cooling schedule.

For background on the simulated annealing method, the reader is referred to the
seminal treatise by van Laarhoven and Aarts (1987).

2.1 Markovian model of the SA algorithm

As noted by Aarts and van Laarhoven (1985) as well as by Lundy and Mees (1986)
the behavior of the simulated annealing algorithm at temperature T can be described
by means of a finite homogeneous Markov chain3 with transition matrix

Aij (T ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if ωj ∈ V (ωi),
1

|V (ωi)| if ωj ∈ V (ωi) and c(ωj ) ≤ c(ωi),

e

c(ωi )−c(ωj )

T
)

|V (ωi)| if ωj ∈ V (ωi) and c(ωj ) > c(ωi),

1 − ∑
j :ωj ∈V (ωi)

Aij (T ) if i = j .

Under the assumption that it is both regular (i.e., the directed graph induced by the
neighbourhood function is strongly connected) and aperiodic, the above chain admits
a unique stationary distribution given by (recall that N = |�|)

π
(∞)
i (T ) = e− c(ωi )

T

∑N
j=1 e− c(ωj )

T

. (4)

2A few authors such as Hajek and Sasaki (1989) and Möbius et al. (1997) consider cooling schedules in
which the temperature is allowed to increase.
3The reader unfamiliar with the theory of finite Markov chains is referred to Kemeny and Snell (1960).
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Also,

lim
T →0

π
(∞)
i (T ) = lim

T →0

1
∑N

j=1 e
c(ωi )−c(ωj )

T

=
{

0 if c(ωi) > e1,
1

|��| otherwise.

2.2 Probabilistic performance guarantees

We now take the differential approximation theory point of view.4

Definition 1 A solution ω ∈ � is β-acceptable if

c(ω) ≤ e1 + β(eP − e1)

and (α,β)-acceptable if

Prob(c(ω) ≤ e1 + β(eP − e1)) ≥ α,

where β ∈ [0,1].
Under the assumptions of regularity and aperiodicity, the following proposition

provides a temperature value suitable for the production of (α,β)-acceptable solu-
tions, given any upper bound on e1.

Proposition 1 Let e1 ≤ z ≤ eP , solutions drawn from the stationary distribution at
temperature

Tf (z) = β(eP − z)

logN − log(1 − α)
(5)

are (α,β)-acceptable.

Proof Let ξ = e1 + β(eP − e1) then

P(c(ω) > ξ ;T ) =
P∑

i:ei>ξ

N(i)e− ei
T

K(T )
≤ e− ξ

T

K(T )

∑

i:ei>ξ

N(i)

︸ ︷︷ ︸
≤N

≤ Ne− βeP
T e

βe1
T

e− e1
T

K(T )︸ ︷︷ ︸
≤1

≤ Ne− β(eP −z)

T .

Where N(i) is the number of solutions with value ei and where

K(T ) =
N∑

j=1

e− c(ωj )

T .

Letting Ne− β(eP −z)

T = 1 − α leads to Eq. 5. �

4Differential approximation theory is based on the notion of differential approximation ratio which mea-
sures how far the value of a solution is from the worst possible value. Its theoretical properties are investi-
gated in Demange and Paschos (1996) (see also Monnot et al. 2003).
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Let zk denote the value of the best solution encountered up to iteration k,
then the algorithm may be stopped as soon as T ≤ Tf (zk). In other words, the
above proposition allows to use the decreasing sequence of values of the best-
so-far solution so as to generate an increasing sequence of final temperature val-
ues, given by Eq. 5, and to stop the algorithm as soon as it reaches the high-
est of these temperatures, that is the better the best-so-far solution, the earlier the
termination.

In general, the choice of α and β leads the algorithm into the realm of rela-
tively small temperature values. Hence, the ability for the simulated annealing al-
gorithm to produce (α,β)-acceptable solutions depends on how well it is able to
simulate the stationary distribution at such temperature values. In order to do so,
the idea consists in starting the algorithm at a relatively high temperature, say T0,
where convergence towards the stationary distribution is extremely fast, and to de-
crease the temperature in such a way that the stationary distributions for two suc-
ceeding values are close to each other. In particular (Aarts and van Laarhoven 1985),
choosing

Tk+1 = Tk

1 + log(1+δ)
eP +1 Tk

(6)

guarantees that

|π(∞)
i (Tk) − π

(∞)
i (Tk+1)| ≤ δ,

where δ is a small positive real number. As a consequence, it is reasonable to expect
that after decreasing the temperature only a few iterations are required in order to
approach the new stationary distribution. Needless to emphasize that, despite of its
reasonableness, this argument is of heuristic nature.

Note that the Markovian model of Sect. 2.1 has inspired many other cooling sched-
ules. See Triki et al. (2005) for a recent survey.

3 Application to the PMP problem

3.1 Approximation measure

Provided that this paper is devoted to the study of approximate solution algorithms
for the PMP problem, an approximation measure is required. Let c denote the value
of the solution obtained using such an algorithm, the following approximation ratio
shall be used to assess its quality

β = c − c�

∑
m∈M cm − c�

,

where c� is the value of an optimal solution and where
∑

m∈M cm is the value of the
worst possible solution which consists in interrupting all the moves.

This measure is quite natural as far as the PMP problem is concerned. On one
hand, 1−β can be interpreted as a differential approximation ratio (see Sect. 2.2). On
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the other hand, it can also be seen as a conventional approximation ratio (Garey and
Johnson 1979) for the maximization problem complementary to the PMP problem
which asks to maximize the sum of the costs of the moves which are not interrupted.

3.2 Statement of the algorithm

As far as the PMP problem is concerned, � is the set of the |M|! permutations of
the moves and two such permutations are neighbours if one can be obtained from the
other by exchanging the positions of only two moves and vice versa. It is obvious
that the directed graph induced by such a neighbourhood function is strongly con-
nected since any desired permutation can be obtained by starting with all elements in
lexicographic order and then exchanging appropriate pairs of elements.

This, along with the theoretical aspects covered in the previous sections, leads to
Algorithm 2. Its parameters are α, β and δ as well as the chain length (i.e., the number
of iterations for each value of the temperature) which has been fixed to |M| (a prag-
matic as well as quite conventional choice). Also recall that for the PMP problem, the
worst possible solution consists in interrupting all the moves, hence eP = ∑

m∈M cm.5

Algorithm 2 Simulated annealing applied to the PMP problem

Do T ← ∑
m∈M cm.

Initialise π to an arbitrary permutation of the moves.
Do c ← c(π), π� ← π and c� ← c.

While T ≥ β(
∑

m∈M cm−c�)

log |M|!−log(1−α)
do:

For k = 1 to |M| do:
Choose m uniformly in M and m′ uniformly in M \ {m}.
Exchange π(m) and π(m′) and do c′ ← c(π).
Choose u uniformly in [0,1].
If u ≤ e− c′−c

T thena

Do c ← c′.
If c < c� then do π� ← π as well as c� ← c.

Else
Exchange π(m) and π(m′).

End.
End.
T ← T

1+ log(1+δ)

1+∑
m∈M cm

T
.

End.

aAgain, note that e
− c(ω′)−c(ω)

T ≥ 1 when c(ω′) ≤ c(ω)

5Note that the calculation of the worst value is not always as straightforward as here and may even be as
hard as finding the optimum value. See the discussion in Demange and Paschos (1996).
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3.3 Building admissible solutions

Algorithm 2 requires a mechanism able to associate an admissible solution, hence a
value, to any permutation π : M −→ {1, . . . , |M|}.

First, let us remark that using the naive algorithm which tries to perform the moves
in the order induced by π , interrupting those which are not feasible (see Algorithm 3),
may lead to miss all optimum solutions. Figure 2 provides an example of an instance
for which this happens. Indeed, the unique optimal solution clearly consists in in-
terrupting move f and in then performing the other moves in the order eadcb. So
either π orders move f before the other moves in which case Algorithm 3 performs
it (since it is feasible) and later has to interrupt another move or π first orders a move
other than f and since no such move is initially feasible the algorithm interrupts it.
Both cases lead only to solution with value greater than 1, hence non optimal.

Algorithm 3 A naive algorithm which builds an admissible process move program from a permutation
π : M −→ {1, . . . , |M|} of the moves. At the end of the algorithm the set I contains the interrupted moves
(c(π) = ∑

m∈I cm), then m ∈ I is performed before m′ ∈ I if π(m) < π(m′)

Do I ← ∅ and Lu ← Ku for all u ∈ U .
For i = 1 to |M| − 1 do:

m ← π−1(i).
If Ltm ≥ wm then

Ltm ← Ltm − wm.
Lsm ← Lsm + wm.

Else
Lsm ← Lsm + wm.
I ← I ∪ {m}.

End.
End.

Fig. 2 An instance for which
using Algorithm 3 leads to miss
the unique optimal solution. The
number in parenthesis indicates
either the initial capacity of a
processor (e.g. K1 = 3) or the
weight of a move (e.g., wa = 6)
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Algorithm 4 Construction of an admissible process move program from a permutation π : M →
{1, . . . , |M|} of the moves. At the end of the algorithm the set I contains the interrupted moves (c(π) =∑

m∈I cm), then m ∈ I is performed before m′ ∈ I if π(m) < π(m′)

Do I ← M .
Do Lu ← Ku + ∑

m∈S(u) wm and �u = Lu for all u ∈ U .
For i = 1 to |M| do:

m ← π−1(i).
If �sm ≥ wm then

�sm ← �sm − wm.
Ltm ← Ltm − wm.
�tm ← min(�tm,Ltm).
I ← I \ {m}.

End.
End.

Algorithm 4 avoids this pitfall by starting from the worst solution, that is the solu-
tion which interrupts all the moves, and by trying to avoid these interruptions in the
order specified by π . The principle of the algorithm is as follows. Initially all of the
moves are interrupted. At the end of the kth step of the loop, I (k) (the content of vari-
able I at this point of the execution) contains all the moves in {m ∈ M : π(m) > k}
as well as potentially some of the moves not in this set, then m ∈ I (k) is performed
before m′ ∈ I (k) if π(m) < π(m′). Let m = π−1(k + 1), the interruption of m can
then be avoided (i.e., m can be removed from I ) as long as no capacity constraint
is violated if the process associated to m remains on sm during the execution of the
solution obtained at the end of the kth step of the loop that is if

wm ≤ min
i=1,...,k

(
Ku +

∑

m′∈S(u)∩I (k)

wm′ +
∑

m′∈S(u)\I (k)

π(m′)≤i

wm′ −
∑

m′∈C(u)\I (k)

π(m′)≤i

wm′
)

= �(k)
sm

,

(7)
where �

(k)
sm denotes the content of variable �sm at the end of the kth step of the loop

i.e., the residual capacity which is always available on sm during the first k steps of
the loop.

Proposition 2 implies that m is then feasible.

Proposition 2 Let (I, σ ) denote an admissible process move program, if the process
associated to a move m ∈ I can remain on sm during the entire execution of (I, σ )

then, after its execution, tm has enough remaining capacity to host the process asso-
ciated to m i.e., m is possible.

Proof After performing all the moves in M \ I the remaining capacity on tm is
equal to

Ktm +
∑

m′∈S(tm)

wm′ −
∑

m′∈C(tm)\I
wm′
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Table 1 Trace of Algorithm 4
when executed on permutation
eadcbf of the moves of the
instance shown in Fig. 2. At step
6, move f is added to I since
0 = �1 < wf = 1

U 0 1 2 3 U 0 1 2 3 m

�(0) 6 12 9 6 L(0) 6 12 9 6

�(1) 6 9 6 6 L(1) 6 12 6 6 e

�(2) 0 6 6 6 L(2) 6 6 6 6 a

�(3) 0 6 0 6 L(3) 0 6 6 6 d

�(4) 0 6 0 0 L(4) 0 6 0 6 c

�(5) 0 0 0 0 L(5) 0 6 0 0 b

�(6) 0 0 0 0 L(6) 0 6 0 0 f

and, from Eq. 3, we have

Ktm +
∑

m′∈S(tm)

wm′ −
∑

m′∈C(tm)\I
wm′ ≥

∑

m′∈C(tm)∩I

wm′ ≥ wm.
�

Table 1 illustrates that Algorithm 4 is indeed able to build the unique optimal
solution to the instance shown in Fig. 2.

Lastly, it should be emphasized that Algorithm 4 can be extended to the multiple
resource case in a straightforward manner.

3.4 Complexity

The following proposition quantifies the number of plateaux of temperature met by
Algorithm 2.

Proposition 3 Algorithm 2 meets O(
|M| log |M|∑m∈M cm

log(1+δ)
) plateaux of temperature.

Proof Let γ = log(1+δ)

1+∑
m∈M cm

, it is easy to see that the algorithm cooling schedule

(Eq. 6) is such that

Tk+l = Tk

1 + lγ Tk

.

Since at worst the algorithm remains stuck with a solution which interrupts all but
one move and since such a solution has value at most

∑
m∈M cm − 1, the number of

plateaux, say , is the solution of

T0

1 + γT0
= β

log |M|! − log(1 − α)
,

that is

 = (1 + ∑
m∈M cm)(log |M|! − log(1 − α))

β log(1 + δ)
− 1

γ
∑

m∈M cm

∝ log |M|!∑m∈M cm

log(1 + δ)

≈ (|M| − 1) log |M|∑m∈M cm

log(1 + δ)
. �
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Since Algorithm 4 clearly runs in O(|M|) and provided that |M| iterations are
performed for each value of the temperature, Algorithm 2 runs in

O

(
|M|3 log |M|∑m∈M cm

log(1 + δ)

)
.

Algorithm 2 is therefore pseudopolynomial.
Despite of this result, it should be emphasized that the method is relatively com-

putationally expensive as, for example, the constant hidden in the O-notation has
an order of magnitude of about 200 when β = 0.05 and δ = 0.1. Of course, it is
reasonable to expect that the worst case behavior occurs rarely in practice, as the al-
gorithm usually finds reasonably good solutions fairly quickly (recall the discussion
in Sect. 2.2).

4 Computational experiments

In this section, we report on computational experiments carried out so as to assess the
practical ability of our simulated annealing algorithm to produce 5%-acceptable so-
lutions (β = 0.05) around 95 times out of 100 (α = 0.95), which reflects “reasonable”
quality expectations. Also, δ was set to 0.1. These experiments have been performed
on a Sun Ultra 10 workstation with a 440 MHz Sparc microprocessor, 512 Mo of
memory and the Solaris 5.8 operating system.

4.1 Instance generation

Given U the set of processors, C the processor capacity and W an upper bound on
the process consumption, an instance is generated as follows.

First, the set of processes is built by drawing consumptions uniformly in
{1, . . . ,W } until

∑
p∈P wp ≥ C|U |. The initial state, fi , is then generated by ran-

domly assigning the processes to the processors: the processor to which a process
is assigned is drawn uniformly from the set of processors for which the remain-
ing capacity is sufficient (note that not all processes necessarily end up assigned
to a processor). The final state, ft , is built in the very same way to the exception
that only the processes which are assigned to a processor in the initial state are
considered. An instance is considered valid only if all the processes assigned to a
processor in the initial state are also assigned to a processor in the final state. In-
valid instances are discarded and the construction process is repeated until a valid
instance is obtained (the rejection rate depends on the parameters, as an example,
coarse estimates for |U | = 10, C = 100 as well as W = 10 and W = 50 respec-
tively are 29% and 41%). The set of moves is then built as explained in the intro-
duction.

It should be emphasized that the above scheme generates instances for which the
capacity constraints are extremely tight, instances which can be expected to be hard
and, in particular, significantly harder than those occurring in practice. As an exam-
ple, for |U | = 10, C = 100 and W = 10 only 1.28% of free capacity remains, on
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average, on each of the processors. However, for the system to which this work is to
be applied (Sirdey et al. 2003) the maximum theoretical load of a processor ranges
(nonlinearly) from at most 50% (for a system with 2 processors) to at most around
93% (for a system with 14 processors, which is the maximum). This is so because
some spare capacity is provisioned for fault tolerance purpose and this spare capacity
is spread among all the processors. Additionally, it should be stressed that the system
carries at most 100 processes and that a preprocessing technique, based on the fact
that the properties of a system state are invariant by a permutation of the processors,
is used to decrease the number of moves by around 25% on average. It turned out that
our simulated annealing algorithm was able to solve virtually all practical instances
to optimality and that, as a consequence, we had to consider more aggressive instance
generation schemes, such as the above, in order to fairly evaluate the performances
of the algorithm. As an example, on a set of 10 real instances of maximum practical
size (72.3 moves, on average, for a system with 14 processors), the average time to
optimality was 15.98 seconds.

Lastly, we have supposed that cm = wm, which is quite natural for our application
as it is reasonable to assume that the amount of service provided by a process is
proportional to the amount of resources it consumes.

4.2 Computational results

In order to reasonably explore the (practically relevant part of the) problem space we
have used the scheme of Sect. 4.1 to generate a set of 10 instances for each |U | ∈
{2, . . . ,14},6 each W ∈ {10,20, . . . ,90,100} and C = 100. Hence a total of 1300
instances, amongst which only 1020 were considered of nontrivial size (up to 254
moves) and used in our experiments.

In fact, the instance base is the same that we used in order to assess the practical
relevance of the branch-and-bound algorithm presented in Sirdey et al. (2005a), the
advantage being that the value of an optimum solution is known for many of these
instances.

Just running the algorithm and hoping for the best is not entirely satisfactory for
two main reasons:

1. It does not give any idea as to whether or not a 5%-acceptable solution has effec-
tively been obtained, even if we have good reasons to believe it is often so.

2. It may induce unjustified computation time as, quite often, a 5%-acceptable solu-
tion is obtained fairly early.

In order to address the above issues we proceed in two steps:

1. A lower bound, denoted by l, is obtained by solving a linear programming relax-
ation of the problem using a cutting plane algorithm7 (the details of which being
out of the scope of this paper, see Sirdey and Kerivin 2007).

6The choice for the values of |U | is motivated by the fact that the system to which this work is to be applied
contains at least 2 and at most 14 processors (Sirdey et al. 2003).
7Although this relaxation involves exponentially many inequalities it can theoretically be solved in
pseudopolynomial time. This follows from the pseudopolynomiality of the separation problem for these
inequalities and from the well-known equivalence between optimization and separation (Schrijver 1986).
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Fig. 3 Execution time of the algorithm in terms of the instance size

2. The simulated annealing algorithm is started and stopped as soon as a solution of
value less than or equal to 0.95l + 0.05

∑
m wm is encountered, if this happens.

Figure 3 provides the execution time of the algorithm for each of the instances in
the base.

On the overall instance base, the algorithm was able to conclude that a 5%-
acceptable solution was obtained for 868 instances (85.01%). A large part of the
152 instances for which the algorithm was not able to reach this conclusion were
located in the small number of moves and small number of processors area, where
the LP bound seems to be of lesser quality. This is illustrated in Fig. 4. Moreover,
the algorithm effectively obtained a 5%-acceptable solution for all but 23 of these
152 instances but was unable to prove it (we could reach this conclusion because we
know the value of an optimal solution for many of these 152 instances). For all but
3 of these remaining 23 instances, all that was required to obtain a 5%-acceptable
solution was to restart the simulated annealing step 1.7 times, on average. Finally,
10 trials of the simulated annealing step were not enough to provably obtain a 5%-
acceptable solution in the case of only 3 instances, the characteristics of which being
given in Table 2. Since the value of an optimal solution is unknown for these 3 in-
stances we are unable to conclude, although it should be emphasized that the best
solutions obtained are nearly 5%-acceptable.

Figure 4 provides the repartition of the 152 instances for which the algorithm was
not able to conclude that a 5%-acceptable solution was obtained. A “+” indicates an
instance for which the algorithm effectively obtained a 5%-acceptable solution but
was unable to prove it, a “×” indicates an instance for which more than one run of
the simulated annealing step were required to obtain a 5%-acceptable solution and
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Table 2 Characteristics of the 3
instances for which
5%-acceptable solutions were
not provably obtained, even
after 10 trials of the simulated
annealing step

|U | |M| OPT Best β

13 36 ? 5.65%

12 37 ? 5.32%

10 24 ? 5.90%

Fig. 4 Repartition of the 152 instances for which the algorithm was not able to conclude that a
5%-acceptable solution was obtained

a “♦” indicates an instance for which no 5%-acceptable solution has provably been
obtained, even after 10 trials of the simulated annealing step.

Additionally, Table 3 illustrates the approximation performances of the algorithm
by providing the percentage of instances solved within a given distance to optimality
in reality (e.g. 1.76% of the instances were solved within a distance of 5 to 6% to
optimality) and, to be fair, from the viewpoint of a “blind” user who has no knowl-
edge on the value of an optimal solution other than provided by the lower bound. As
already emphasized, the majority of the problematic instances (for the “blind” user)
are located within the small number of moves (say less than 20) and small number of
processors (say less than 7) area and are attributable to the relative weakness of the
lower bound in this area.

If we ignore the above 3 problematic instances and coarsely estimate the probabil-
ity for the simulated annealing scheme to effectively reach a 5%-acceptable solution
(ratio of the number of successes over the number of trials) we obtain 0.9676, in re-
markable agreement with the real value of α. Lastly, taking the pessimistic viewpoint
and putting the 3 problematic instances back into the picture, that is considering 30
more trials and no additional success, leads to 0.9408, recall however that the ques-
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Table 3 Percentage of instances solved within a given distance to optimality in reality and from the
viewpoint of a “blind” user

≤5% ]5%,6%] ]6%,7%] ]7%,8%] ]8%,9%] ]9%,10%] ]10%,15%] ]15%,18%]
Real 97.74% 1.76% 0.49% 0% 0% 0% 0% 0%

Blind 85.01% 4.61% 3.63% 2.06% 2.25% 0.88% 1.27% 0.20%

tion as to whether or not a 5%-acceptable solution has effectively been obtained is
left opened for these 3 instances.

5 Conclusion

In this paper, we have proposed a simulated annealing-based approximation algo-
rithm for the Process Move Programming problem, a strongly NP -hard scheduling
problem which consists, starting from an arbitrary initial process distribution on the
processors of a distributed system, in finding the least disruptive sequence of oper-
ations (non-impacting process migrations or temporary process interruptions) at the
end of which the system ends up in another predefined arbitrary state. The main con-
straint is that the capacity of the processors must not be exceeded during the recon-
figuration. This problem has applications in the design of high availability real-time
distributed switching systems such as the one discussed in Sirdey et al. (2003).

We have introduced the notion of (α,β)-acceptable solution, where β is a mea-
sure of distance to optimality and α is the probability that it is achieved, and used
the Markovian theory underlying the homogeneous simulated annealing algorithm to
derive conditions under which such solutions may be produced. These results have
then been used to design a pseudopolynomial time approximation algorithm for the
PMP problem.

Although, at the end of the day, our reasoning is heuristic, since there is no the-
oretical guarantee that sufficient proximity to the stationary distribution is achieved
at end of each plateau of temperature, we have performed extensive computational
experiments which suggest that the algorithm meets its design intent.

In these experiments, the algorithm was set up to provide (95%,5%)-acceptable
solutions. Building on previous research on exact solution algorithms (Sirdey et al.
2005a), we have been able to demonstrate that the algorithm effectively obtained a
5%-acceptable solution for 97.74% of the 1020 instances (with up to 254 moves) on
which it was tried. This, as well as the analysis of the number of retrials required to
obtain a 5%-acceptable solution on the remaining instances, strongly suggests that
the algorithm is indeed able to produce (95%,5%)-acceptable solutions to the PMP
problem.

Despite of the above, it should be emphasized that our simulated annealing al-
gorithm is relatively computationally expensive. Faster, although having less sound
theoretical foundations, algorithms are presently discussed in Sirdey et al. (2005).
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