
Int. J. Innovative Computing and Applications, Vol. 2, No. 3, 2010 143

Copyright © 2010 Inderscience Enterprises Ltd.

A GRASP for a resource-constrained scheduling
problem

Renaud Sirdey1*
CEA LIST, Embedded Real Time Systems Lab,
Point Courrier 94, 91191 Gif-sur-Yvette Cedex, France
E-mail: renaud.sirdey@cea.fr
*Corresponding author

Jacques Carlier and Dritan Nace
UMR CNRS Heudiasyc,
Université de Technologie de Compiègne,
Centre de Recherches de Royallieu,
BP 20529, 60205 Compiègne Cedex, France
E-mail: jacques.carlier@hds.utc.fr
E-mail: dritan.nace@hds.utc.fr

Abstract: This paper is devoted to the approximate resolution of a strongly NP-hard real world
resource-constrained scheduling problem, which arises in relation to the operability of certain
high availability real time distributed systems. We present a fast and pragmatic algorithm based
on the GRASP metaheuristic and, building on previous research on exact resolution methods,
extensive computational results demonstrating its practical ability to find solutions within a few
percents to optimality on a wide spectrum of hard instances.

Keywords: combinatorial optimisation; scheduling; GRASP; distributed systems; OR in
telecommunications.

Reference to this paper should be made as follows: Sirdey, R., Carlier, J. and Nace, D. (2010)
‘A GRASP for a resource-constrained scheduling problem’, Int. J. Innovative Computing and
Applications, Vol. 2, No. 3, pp.143–149.

Biographical notes: Renaud Sirdey is a Researcher at Commissariat à l’Energie Atomique,
the French atomic energy research agency. His main research interests include parallelism,
compilation, graph theory and combinatorial optimisation. Prior to that, he held various R&D
positions in the telecommunications industry. He received a diplôme d’ingénieur and a PhD in
CS from Universitè de Technologie de Compiègne (UTC) as well as an MSc in Applied Maths
from Cranfield University (UK). He teaches software engineering at Ecole Nationale Supérieure
de Techniques Avancées (Paris) as well as operations research at UTC.

Jacques Carlier is Professor of CS as well as the Head of Doctoral Studies in CS at the Université
de Technologie de Compiègne. His main research interests include scheduling, combinatorial
optimisation, graph theory and bin-packing. He received his PhD in CS as well as a Doctorat
d’Etat both from Paris VI University and is an alumnus of Ecole Normale Supérieure de Cachan.

Dritan Nace is Professor of CS at the Université de Technologie de Compiégne. His
main research interests include networks optimisation, robustness, linear programming and
combinatorial optimisation. He received his PhD in CS as well as his Habilitation à Diriger les
Recherches both from the Université de Technologie de Compiègne.

1 Introduction

In this paper, we present a GRASP for the process move
programming (PMP) problem. This problem arises in
relation to the operability of certain high-availability
distributed switching systems. For example, Sirdey et al.
(2003), consider a telecom switch managing radio cells on a
set of call processing modules, hereafter referred to as
processors, of finite capacity in terms of erlangs, CPU,

memory, ports, etc.; each radio cell being managed by
a dedicated process running on some processor. During
network operation, some cells may be dynamically added,
modified (transreceivers may be added or removed) or
removed, potentially leading to unsatisfactory resource
utilisation in the system. This issue is addressed by first
obtaining a better system configuration and by subsequently
reconfiguring the system, without violation of the capacity
constraints on the processors.

144 R. Sirdey et al.

Figure 1 provides an example of an instance of the PMP
problem for a system with ten processors, one resource and
46 processes. The capacity of each of the processors is equal
to 30 and the sum of the consumptions of the processes is
281. The top and bottom figures respectively represent the
initial and the final system states. For example, process
number 23 must be moved from processor 2 to processor 6.

Figure 1 Example of an instance of the PMP problem

As discussed in Section 3, the PMP problem has already
been tackled with both combinatorial (branch-and-bound)
and polyhedral (branch-and-cut) exact resolution methods
as well as computationally intensive heuristic approaches
such as simulated annealing. Still, for real-time constraints
related to the industrial context of the present work, there is
a need for fast, pragmatic approximate resolution algorithms
with reasonable implementation complexity. Our motivation
for using the GRASP paradigm to design such an algorithm
is based on software engineering considerations. Indeed,
the GRASP paradigm allows to achieve an interesting
trade-off between the following criteria: implementation
complexity (which should be understood as a measure of
how difficult it is to write and, more importantly, to
subsequently maintain the resulting software2), calculation
time and performance (in terms of quality of the provided
solutions). Usually, the operations research literature
focuses on the two latter criteria and largely omits the first
one which in many real world situations is at least as
important [see Sirdey (2006) for a more thorough
discussion]. A polyhedral exact resolution method, e.g.,
requires fairly advanced mathematical skills to be
understood (a prerequisite for maintaining the software) as
well as high computation times to provide optimum or
provably high-quality solutions. A simulated annealing-
based algorithm, still e.g., usually achieves a very different
trade-off: understanding and programming it is simple
however it still requires fairly important computation times
to provide reasonably (and certainly not provably) good
solutions. The GRASP approach to combinatorial
optimisation problems attempts (in the authors’ opinion) to
achieve yet another trade-off with an implementation

complexity slightly higher that an SA-based algorithm but
an ability to provide reasonably (still not provably) good
solutions at significantly lower computational costs. This
makes GRASP a paradigm of choice for designing an
optimisation algorithm for a real world problem with
real world operational and software engineering constraints.

This paper is organised as follows. First, Section 2
provides a formal statement of the problem and Section 3
succinctly discusses previous work on the PMP problem.
Then, Section 4 provides background on GRASP and
Section 5 presents our algorithm. Lastly, in Section 6, we
provide extensive computational results which demonstrate
the practical relevance of the approach.

2 Formal problem statement
Let us consider a distributed system composed of a set U of
processors, each processor offering an amount ∈uC of a
given resource. We are also given a set P of applications,
hereafter referred to as processes, which consume the
resources offered by the processors. The set P is
sometimes referred to as the payload of the system. For
each process ,∈p P ∈pw denotes the amount of
resource which is consumed by process .p Note that neither
uC nor pw vary with time.

An admissible state for the system is defined as a
mapping : { },∞→ ∪f P U u where ∞u is a dummy
processor having infinite capacity, such that for all ∈u U
we have:

(;)

,
∈

≤∑ p u
p P u f

w C (1)

where (;) { : () }.= ∈ =P u f p P f p u The processes in
() (;)∞=P f P u f are not instantiated and, when this set is

non-empty, the system is in degraded mode.
An instance of the PMP problem is then specified by

two arbitrary system states if and tf respectively referred
to as the initial system state and the final system state or, for
short, the initial state and the final state.3

A process may be moved from one processor to another
in two different ways: either it is migrated, in which case it
consumes resources on both processors for the duration of
the migration and this operation has virtually no impact on
service, or it is interrupted, that is removed from the first
processor and later restarted on the other one. Of course,
this latter operation has an impact on service. Additionally,
it is required that the capacity constraints (1) are always
satisfied during the reconfiguration and that a process is
moved (i.e., migrated or interrupted) at most once. This
latest constraint is motivated by the fact that a process
migration is far from being a lightweight operation [for
reasons related to distributed data consistency which are out
of the scope of this paper, see e.g., Jalote (1994)] and, as a
consequence, it is desirable to avoid processes hopping
around processors.

Throughout this paper, when it is said that a move is
interrupted, it is meant that the process associated to the

 A GRASP for a resource-constrained scheduling problem 145

move is interrupted. This slightly abusive terminology
significantly lightens our discourse.

For each processor ,u a process p in (;) \ (;)i tP u f P u f
must be moved from u to ().tf p Let M denote the set of
process moves thus induced by the initial and final states.
Then for each , ,∈ m mm M w s and mt respectively denote
the amount of resource consumed by the process moved by

,m the processor from which the process is moved that is
the source of the move and the processor to which the
process is moved that is the target of the move. Lastly,

() { : }= ∈ =mS u m M s u and () { : }.= ∈ =mT u m M t u
A pair (,),I σ where ⊆I M and : \ {1,...,| \ |}→M I M Iσ

is a bijection, defines an admissible process move
programme, if provided that the moves in I are interrupted
(for operational reasons, the interruptions are performed at
the beginning) the other moves can be performed according
to σ without inducing any violation of the capacity
constraints (1). Formally, (,)I σ is an admissible
programme if for all \∈m M I we have:

()\ ()\
() () () ()

,

′

′ ′ ′
′ ′ ′∈ ∈ ∈

′ ′= < <

≤ + + −∑ ∑ ∑m

m m
m m

m t m m m
m I m S t I m T t I
s t m m m m

w K w w w

σ σ σ σ

 (2)

where (;)∈= − ∑
ip P u fu u pK C w denotes the remaining capacity on

processor u in the initial state, thereby guaranteeing that the
intermediate states are admissible.

Also note that because the final state is admissible, we
have for each processor .∈u U

() ()

0.
∈ ∈

+ − ≥∑ ∑u m m
m S u m T u

K w w (3)

Let mc denote the cost of interrupting ,∈m M the PMP
problem then formally consists, given a set of moves, in
finding a pair (,)I σ such that () ∈= ∑ mm Ic I c is minimum.

3 Related work

The PMP problem is now relatively well studied from an
exact resolution perspective. Sirdey et al. (2007) have
shown that the PMP problem is strongly NP-hard, exhibited
some polynomially solvable special cases (the most notable
one being | | 1=R and =mw w for all ∈m M) as well as
proposed a ‘combinatorial’ branch-and-bound algorithm for
the general case (an extensive literature survey is also
provided in that paper). Additionally, Sirdey and Kerivin
(2006) have studied the problem from the point of view of
polyhedral combinatorics, leading to an exact resolution
branch-and-cut algorithm. In terms of approximate
resolution, a computionally intensive, although quite
theoretically sound, simulated annealing-based algorithm
has been proposed by Sirdey et al. (2009). Still, as already
stated in the introduction, for operational reasons related to
the industrial context of this work, there is a need for fast,
pragmatic approximate resolution algorithms. Thus, in this
paper, we present such an algorithm based on the GRASP
metaheuristic.

4 GRASP in a nutshell

GRASP4 is an approximate resolution algorithm design
paradigm introduced in the nineties by Feo and Resende
(1989, 1995). This paradigm is interesting for it combines
two fairly natural techniques for heuristically dealing with
hard combinatorial problems: greedy algorithms and local
search.

A GRASP is a multi-start heuristic, at each step a
randomised greedy algorithm is used to build an admissible
solution which neighbourhood is explored using a local
search procedure. The best of these thus obtained solutions
is output by the algorithm.

Given a combinatorial optimisation problem, a greedy
algorithm is an algorithm which iteratively builds an
admissible solution by, at each iteration, making the
decision resulting in the best objective function
improvement, each such decisions being definitive. In
general, greedy algorithms do not perform particularly well
and randomisation is a valuable tool in order to improve
their performances, as Karp (1991) puts it:

“Often, the introduction of randomization
suffices to convert a simple and naive
deterministic algorithm with bad worst-case
behavior into a randomized algorithm that
performs well with high probability on every
possible input.”

The randomisation scheme usually employed in GRASP
implementations has been proposed by Hart and Shogan
(1987). At each iteration, the algorithm considers the best
and worst objective function improvements, say +γ and −γ
respectively, and make a decision drawn uniformly from the
set of decisions which improve the objective function by at
least ()+ − ++ −γ α γ γ where [0,1].∈α The parameter
controls the amount of greediness: when 0=α the
algorithm systematically makes the decisions which best
improve the objective function hence builds greedy
solutions, whereas when 1=α the algorithm builds random
ones.

In general, there is no guarantee for solutions built using
a randomised greedy algorithm to be locally optimal with
respect to a given neighbourhood structure. Hence, it is
relevant to start a local search procedure at each or some
(depending on the computational cost of the procedure) of
the solutions provided by the construction phase.

At present, GRASP seems to emerge as one of the
leading paradigms for designing efficient approximate
resolution algorithms for hard combinatorial optimisation
problems. An evidence of this being that it has been
successfully applied to a wide range of such problems; see
the survey papers by Resende (1998) as well as by Resende
and Ribeiro (2003).

5 Application to the PMP problem

This section outlines our GRASP for the PMP problem. We
thus present the construction and local search phases as well

146 R. Sirdey et al.

as detail how the two are glued together to obtain a proper
GRASP.

5.1 Construction phase
Let I denote the (initially empty) set of moves which are
interrupted and R denote the (initially equal to)M set of
moves which are yet neither ordered nor scheduled. Also,
let σ denote an ordering of the moves in \ ()∪M I R
which is admissible under the assumption that the moves in
I are interrupted and that the moves in R are not
performed i.e., that the associated process simply remains
on the source processor.

At each iteration, we then proceed as follows.
Let ⊆X R denote the set of moves which can be

inserted in σ without jeopardising its admissibility (as
defined above). Until this set is non-empty, a move is drawn
uniformly from max min{ : () (1) ()}∈ ≤ + −mm R c c R c Rα α
removed from R and added to .I At that point, X is
non-empty and a move is then drawn uniformly from

max min{ : () (1) ()}∈ ≥ + −mm X c c X c Xα α removed from
R and inserted as early as possible into .σ Lastly, the set
I is minimalised. Let ⊆Y I be such that the new ordering
σ remains admissible if any move ∈m Y is neither
interrupted nor performed. Then a move is drawn uniformly
from max min{ : () (1) ()}∈ ≥ + −mm Y c c Y c Yα α removed
from I and added to ,R until Y ends up being empty.

The above scheme is repeated until R is empty.
The ability for moves to switch back and forth between

R and I is undoubtfully an important feature of the above
algorithm. Indeed, interruption decisions are regularly
challenged and potentially backtracked on. As an example,
it leaves the possibility for one or more interruption
decisions to eclipse a preceding one, therefore giving a
second chance to the move associated to the latter.

5.2 Local search phase

The construction phase is completed by a local search phase
based on a light-weight exchange strategy between \M I
and .I

Indeed, each iteration of the local search algorithm
consists, for each scheduled move (i.e., each move in

\M I), say ,m in checking whether interrupting it allows
to insert a move ,′∈m I with a cost higher than ,m into .σ
As soon as such a pair of moves is found, a new solution is
generated in which m is interrupted and ′m is performed
as early as possible.

This process is repeated until no such pair exists, hence,
until local optimality is established with respect to this
simple neighbourhood structure.

5.3 Putting it all together

We have integrated the above construction and local search
phases following the GRASP paradigm so as to obtain a fast
heuristic for the PMP problem5. The fastness requirement

implied a small number of iterations, | |M log | |M was
chosen, as well as guided our choice of a strategy for the
variation of .α

Indeed, there are three main such strategies: self tune α
according to the reactive procedure of Prais and Ribeiro
(2000), draw α uniformly from [0, 1] or draw from [0, 1]
according to another probability distribution. Computational
experiments reported by Resende and Ribeiro (2003) hint
that when computation time is an issue, the uniform strategy
offers the most appropriate trade-off, in particular compared
to the reactive strategy which appears superior to the others
at the cost of longer computation time.

Hence, our GRASP algorithm reduces to repeating
| |M log | |M times the construction phase of Section 5.1
followed by the local search phase of Section 5.2, each time
with a value of α uniformly drawn from [0, 1]. The best of
these thus obtained solutions is then returned.

6 Computational experiments

It should be emphasised that, following the discussion in
the introduction, the purpose of this paper and of the
experiments reported in this section is not to conclude on
the relative calculation cost-to-performance ratio between
our GRASP and other methods. Our goal is merely to
illustrate the fact that our GRASP achieves the software
engineering trade-off which was committed to in the
introduction. As an algorithm which can be specified in a
few pages, the implementation complexity of our GRASP is
clearly under control. Thus, in this section, we further report
on computational experiments carried out so as to assess the
ability of our procedure to produce reasonably good
solutions at low computational cost.

These experiments have been performed on a Sun Ultra
10 workstation with a 440 MHz Sparc microprocessor,
512 Mo of memory and the Solaris 5.8 operating system.
For reproductibility purpose, the instances used in the
present experiments can be made available upon email
request to the corresponding author.

6.1 Instance generation

Given U the set of processors, C the processor capacity
and W an upper bound on the process consumption, an
instance is generated as follows.

First, the set of processes is built by drawing
consumptions uniformly in {1,..., }W until | | .∈ ≥∑ pp Pw C U
The initial state, ,if is then generated by randomly
assigning the processes to the processors: the processor to
which a process is assigned is drawn uniformly from the set
of processors which remaining capacity is sufficient (note
that not all processes necessarily end up assigned to a
processor). The final state, ,tf is built in the very same way
to the exception that only the processes which are assigned
to a processor in the initial state are considered. An instance
is considered valid only if all the processes assigned to a

 A GRASP for a resource-constrained scheduling problem 147

processor in the initial state are also assigned to a processor
in the final state. Invalid instances are discarded
and the construction process is repeated until a valid
instance is obtained (the rejection rate depends on the
parameters, as an example, coarse estimates for | | 10,=U

100=C as well as 10=W and 50=W respectively are
29% and 41%). The set of moves is then built as explained
in Section 2.

It should be emphasised that the above scheme generates
instances for which the capacity constraints are extremely
tight, instances which can be expected to be hard and, in
particular, significantly harder than those occurring in
practice. As an example, for | | 10,=U 100=C and 10=W
only 1.28% of free capacity remains, on average, on each of
the processors. However, for the system to which this work
is to be applied (see Sirdey et al., 2003) the maximum
theoretical load of a processor ranges (non-linearly) from at
most 50% (for a system with two processors) to at most
around 93% (for a system with 14 processors, which is the
maximum). This is so because some spare capacity is
provisioned for fault tolerance purpose and this spare
capacity is spread among all the processors. Additionally, it
should be stressed that the system carries at most 100
processes and that a preprocessing technique, based on the
fact that the properties of a system state are invariant by a
permutation of the processors, is used to decrease the
number of moves by around 25% on average. It turned out
that our GRASP was able to solve virtually all practical
instances and that as a consequence, we had to consider
more aggressive instance generation schemes, such as the
above, in order to fairly evaluate the performances of the
algorithm.

Lastly, we have supposed that ,=m mc w which is quite
natural for our application as it is reasonable to assume that
the amount of service provided by a process is proportional
to the amount of resources it consumes.

6.2 Computational results
In order to reasonably explore the (practically relevant
part of the) problem space we have used the scheme of
Section 6.1 to generate a set of ten instances for
each | | {2,...,14},∈U 6 each {10,20,...,90,100}∈W and

100.=C Hence, a total of 1300 instances, amongst which
only 1020 were considered of non-trivial size (up to 254
moves) and used in our experiments.

In fact, the instance base is the same that we
used in order to assess the practical relevance of the
branch-and-bound algorithm presented in Sirdey et al.
(2007), the advantage being that the value of an optimum
solution is known for many of these instances. This instance
base was also used for the empirical evaluation of our
simulated annealing algorithm (Sirdey et al., 2009).

For each of the above ten instances sets, Table 1
indicates the average problem size (i.e., the average number
of moves), denoted | |,M as well as an upper bound on the

average optimality gap, denoted ,d which we were
able to (manually) prove using either the output of our
branch-and-bound algorithm (Sirdey et al., 2007), i.e.,
which were solved to optimality by that algorithm, or,
otherwise, the polyhedral lower bound introduced by Sirdey
and Kerivin (2006).

Despite slightly disappointing results on instances
located within the small number of moves (say less than 20)
and small number of processors (say less than seven)
area (we shall come back to this), Table 1 illustrates
the fairly good performances of our GRASP which achieves
an overall average optimality gap of 1.68% (despite
incomplete knowledge of the optimum values leading to
some overestimation of that number). Indeed, in the
eight to 14 processors area, the average upper bound
obtained for the optimality gap is always below 4%
(still despite incomplete knowledge of the optimum values).
It turns out that when W is high enough (typically above
70) the instances are relatively small and, as a consequence,
an optimum solution is known for many of them.
Hence, the average optimality gap is relatively reliably
estimated in that area and the good performances of the
algorithm are illustrated. When W is low enough
(typically below 30), small costs solutions almost always
exist and can be found by the algorithm as illustrated
by the small average optimality gaps observed in the
corresponding area. In between these two areas, the
average optimality gap seems greater. This is nevertheless
most likely explained by the fact that in that area there are
less instances for which an optimum solution is
known, hence, the gap estimation relies more on the
polyhedral bound and this potentially leads to significant
overestimation.

Returning to the small number of moves and small
number of processors area, it appears that the algorithm is
able to solve most instances to optimality but, from time to
time, fails to do so and produces solutions quite far from an
optimal solution (gaps of up to 16% were observed). It turns
out that this is imputable to the fact that the construction
phase does not consider interrupting moves admissible for
insertion in the partial ordering .σ Indeed, we have shown
in Sirdey et al. (2009) that an algorithm which does not
consider such decisions may simply systematically miss all
optimum solutions on certain pathological instances. The
problem is that modifying the algorithm so as to take these
decisions into account (which requires alternating
overall emptying of R and minimilisation of ,I versus
step-by-step, during the construction phase) allows to
satisfactorily solve the small pathological instances but
translates into a significant performance degradation on the
remaining ones. A price which we are not prepared to pay.
As the pathological instances are both very small, few in
numbers and accessible in virtually no time to our
branch-and-bound algorithm, we consider their existence
only a minor nuisance.

148 R. Sirdey et al.

Table 1 Average instance size, denoted | |,M and an upper bound on the average optimality gap, denoted ,d for each of the ten
instances sets generated

2 3 4 5 6 7 8
\ | |W U

| |M d | |M d | |M d | |M d | |M d | |M d | |M d

10 17.3 0.64 37.3 2.14 54.4 1.26 73.1 1.59 86.8 1.02 110.1 0.95 125.8 0.88
20 8.2 2.01 19.5 0.69 26.7 1.33 35.0 2.78 46.7 1.48 56.5 1.53 64.1 1.13
30 6.4 2.40 12.9 4.06 19.5 2.18 23.9 2.58 30.4 2.37 37.2 2.74 44.6 2.42
40 9.9 1.73 12.5 2.97 19.3 2.64 22.9 0.95 28.1 2.72 33.9 2.33
50 10.6 2.86 12.9 1.18 19.5 1.58 22.0 2.30 25.9 2.16
60 13.2 2.82 14.6 3.12 18.1 4.30 21.4 3.05
70 13.3 4.99 15.2 0.00 18.6 0.73
80 11.9 0.00 15.4 0.00
90 12.9 0.00

9 10 11 12 13 14
\ | |W U

| |M d | |M d | |M d | |M d | |M d | |M d

10 150.1 0.99 159.2 1.02 179.5 0.68 198.5 1.10 215.8 0.74 237.6 0.74
20 75.6 1.26 82.1 0.88 92.5 1.16 102.6 0.70 111.1 1.43 122.4 1.92
30 47.2 2.22 56.7 2.11 64.6 2.00 71.2 1.01 77.5 2.40 80.6 1.50
40 37.3 2.20 45.7 2.48 48.0 2.36 51.6 2.03 56.8 2.29 58.6 1.51
50 30.1 3.24 33.5 3.42 37.8 3.17 41.8 2.45 43.7 2.49 53.0 4.09
60 25.8 2.00 29.5 2.42 29.2 1.94 31.8 1.65 35.3 3.24 40.8 3.33
70 22.1 1.70 23.2 0.85 25.7 2.01 28.1 1.90 32.2 2.94 36.3 2.77
80 17.3 0.00 19.0 0.92 21.2 0.32 25.1 0.31 25.5 0.51 28.4 0.00
90 16.3 0.61 18.9 1.01 20.8 0.61 23.6 0.62 22.8 0.88 26.4 0.66
100 12.8 0.00 15.8 0.29 17.9 0.00 18.2 0.08 19.6 0.72 22.7 0.56

Note: | |U denotes the number of processors and W the maximum process consumption (see text).

7 Conclusions

In this paper, we have proposed a fast GRASP-based
heuristic for the PMP problem, a strongly NP-hard
scheduling problem which consists, starting from an
arbitrary initial process distribution on the processors of a
distributed system, in finding the least disruptive sequence
of operations (non-impacting process migrations or
temporary process interruptions) at the end of which the
system ends up in another predefined arbitrary state. The
main constraint is that the capacity of the processors must
not be exceeded during the reconfiguration. This problem
has applications in the design of high availability real-time
distributed switching systems such as the one discussed in
Sirdey et al. (2003).

In particular, we have introduced a randomised
greedy algorithm based on validity preserving insertions of
moves within a valid partial ordering. This algorithm has
the desirable property of challenging and potentially
backtracking on interruption decisions at each step.
A GRASP algorithm has then been designed by
complementing the aforementioned algorithm with a
lightweight local search scheme.

Additionally, building on previous research on exact
resolution procedures (Sirdey et al., 2007; Sirdey and

Kerivin, 2006), we have reported on extensive
computational experiments illustrating the ability of our
algorithm to produce solutions within a few percents to
optimality on a wide spectrum of ‘hard’ instances, hard in
terms of both size and tightness of the capacity constraints.
This is despite the presence of a few small pathological
instances due to the fact that certain decisions are
deliberately not considered during the construction phase.
However, due to their small size, these pathological
instances are easily accessible to exact resolution
procedures.

Lastly, it should be emphasised that as far as solving the
PMP problem in the industrial setting in which it originally
cropped up, the present GRASP-based heuristic has been
considered the most suitable for, as intended, it achieves
an appropriate software engineering trade-off in that
context: low implementation complexity (to meet the
software maintainability constraints), low computational
cost (to meet the real-time constraints) and good enough
performances. In particular, with respect to computational
cost, this algorithm is around one order of magnitude
faster than the simulated annealing scheme of Sirdey et al.
(2009) and several orders of magnitude faster than the
branch-and-bound algorithm of Sirdey et al. (2007).7 For
these reasons, the present GRASP algorithm is intrinsically

 A GRASP for a resource-constrained scheduling problem 149

practically superior to the other approaches reported in the
literature, with respect to the present industrial context, and
it thus turned out that this was the algorithm finally
implemented in the target switching systems, as a result of a
collegial engineering decision in which the first author took
part.

References
Feo, T.A. and Resende, M.G.C. (1989) ‘A probabilistic heuristic

for a computationally difficult set covering problem’,
Operations Research Letters, Vol. 8, pp.67–71.

Feo, T.A. and Resende, M.G.C. (1995) ‘Greedy randomized
adaptive search procedure’, Journal of Global Optimization,
Vol. 6, pp.109–133.

Hart, J.P. and Shogan, A.W. (1987) ‘Semi-greedy heuristics: an
empirical study’, Operations Research Letters, Vol. 6,
pp.107–114.

Jalote, P. (1994) ‘Fault tolerance in distributed systems’,
Distributed Systems, Prentice Hall.

Karp, R.M. (1991) ‘An introduction to randomized algorithms’,
Discrete Applied Mathematics, Vol. 34, pp.165–201.

Prais, M. and Ribeiro, C.C. (2000) ‘Reactive GRASP: an
application to a matrix decomposition problem in TDMA
traffic assignment’, INFORMS Journal on Computing,
Vol. 12, pp.164–176.

Resende, M.G.C. (1998) ‘Greedy randomized adaptive local search
procedures (GRASP)’, Technical Report 98.41.1, AT&T Labs
Research.

Resende, M.G.C. and Ribeiro, C.C. (2003) ‘Greedy randomized
adaptive search procedures’, in Handbook of Metaheuristics,
Volume 57 of International Series in Operations Research &
Management, Springer.

Sirdey, R. (2006) ‘Combinatorial optimization problems in
wireless switch design’, 4OR, Vol. 5, pp.319–33.

Sirdey, R. and Kerivin, H. (2006) ‘A branch-and-cut algorithm for
a resource-constrained scheduling problem’, RAIRO –
Operations Research, Vol. 41, pp.235–251.

Sirdey, R., Carlier, J. and Nace, D. (2009) ‘Approximate resolution
of a resource-constrained scheduling problem’, Journal of
Heuristics, Vol. 15, pp.1–17.

Sirdey, R., Carlier, J., Kerivin, H. and Nace, D. (2007) ‘On a
resource-constrained scheduling problem with application to
distributed systems reconfiguration’, European Journal of
Operational Research, Vol. 183, pp.546–563.

Sirdey, R., Plainfossé, D. and Gauthier, J-P. (2003) ‘A practical
approach to combinatorial optimization problems encountered
in the design of a high availability distributed system’, in
Proceedings of the International Network Optimization
Conference, pp.532–539.

Notes
1 This research was done while Renaud Sirdey was a System

Architect within Nortel GSM Access R&D, Châteaufort,
France.

2 Which, more often than not, is done by individuals other than
the initial designer.

3 Throughout the rest of this paper, it is assumed that
() () 0.= = /i tP f P f When this is not the case the processes

in () \ ()t iP f P f should be stopped before the
reconfiguration, hence, some resources are freed, the
processes in () \ ()i tP f P f should be started after the

reconfiguration and the processes in () ()∩i tP f P f are
irrelevant.

4 Greedy randomised adaptive search procedure.
5 A ‘good’ computationally intensive heuristic is provided by

our simulated annealing scheme (Sirdey et al., 2009).
6 The choice for the values of | |U is motivated by the fact that

the system to which this work is to be applied contains at least
two and at most 14 processors (Sirdey et al., 2003).

7 Furthermore, this algorithm exhibits widely disparate
computation times, as exact procedures for NP-hard problems
usually do. Thus, provided the real time context of our
application and its implementation cost which is higher than
that of our GRASP, its practical relevance is limited to
providing test instances used for the validation of
approximate resolution an algorithm (which still makes it a
precious practical tool).

