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1 Introduction 

In this paper, we present a GRASP for the process move 
programming (PMP) problem. This problem arises in 
relation to the operability of certain high-availability 
distributed switching systems. For example, Sirdey et al. 
(2003), consider a telecom switch managing radio cells on a 
set of call processing modules, hereafter referred to as 
processors, of finite capacity in terms of erlangs, CPU, 

memory, ports, etc.; each radio cell being managed by  
a dedicated process running on some processor. During 
network operation, some cells may be dynamically added, 
modified (transreceivers may be added or removed) or 
removed, potentially leading to unsatisfactory resource 
utilisation in the system. This issue is addressed by first 
obtaining a better system configuration and by subsequently 
reconfiguring the system, without violation of the capacity 
constraints on the processors. 
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Figure 1 provides an example of an instance of the PMP 
problem for a system with ten processors, one resource and 
46 processes. The capacity of each of the processors is equal 
to 30 and the sum of the consumptions of the processes is 
281. The top and bottom figures respectively represent the 
initial and the final system states. For example, process 
number 23 must be moved from processor 2 to processor 6. 

Figure 1 Example of an instance of the PMP problem 

 

As discussed in Section 3, the PMP problem has already 
been tackled with both combinatorial (branch-and-bound) 
and polyhedral (branch-and-cut) exact resolution methods  
as well as computationally intensive heuristic approaches  
such as simulated annealing. Still, for real-time constraints 
related to the industrial context of the present work, there is 
a need for fast, pragmatic approximate resolution algorithms 
with reasonable implementation complexity. Our motivation 
for using the GRASP paradigm to design such an algorithm 
is based on software engineering considerations. Indeed,  
the GRASP paradigm allows to achieve an interesting  
trade-off between the following criteria: implementation 
complexity (which should be understood as a measure of 
how difficult it is to write and, more importantly, to 
subsequently maintain the resulting software2), calculation 
time and performance (in terms of quality of the provided 
solutions). Usually, the operations research literature 
focuses on the two latter criteria and largely omits the first 
one which in many real world situations is at least as 
important [see Sirdey (2006) for a more thorough 
discussion]. A polyhedral exact resolution method, e.g., 
requires fairly advanced mathematical skills to be 
understood (a prerequisite for maintaining the software) as 
well as high computation times to provide optimum or 
provably high-quality solutions. A simulated annealing-
based algorithm, still e.g., usually achieves a very different 
trade-off: understanding and programming it is simple 
however it still requires fairly important computation times 
to provide reasonably (and certainly not provably) good 
solutions. The GRASP approach to combinatorial 
optimisation problems attempts (in the authors’ opinion) to 
achieve yet another trade-off with an implementation 

complexity slightly higher that an SA-based algorithm but 
an ability to provide reasonably (still not provably) good 
solutions at significantly lower computational costs. This 
makes GRASP a paradigm of choice for designing an 
optimisation algorithm for a real world problem with  
real world operational and software engineering constraints. 

This paper is organised as follows. First, Section 2 
provides a formal statement of the problem and Section 3 
succinctly discusses previous work on the PMP problem. 
Then, Section 4 provides background on GRASP and 
Section 5 presents our algorithm. Lastly, in Section 6, we 
provide extensive computational results which demonstrate 
the practical relevance of the approach. 

2 Formal problem statement 
Let us consider a distributed system composed of a set U  of 
processors, each processor offering an amount ∈uC  of a 
given resource. We are also given a set P  of applications, 
hereafter referred to as processes, which consume the 
resources offered by the processors. The set P  is 
sometimes referred to as the payload of the system. For 
each process ,∈p P  ∈pw  denotes the amount of 
resource which is consumed by process .p  Note that neither 
uC  nor pw  vary with time. 

An admissible state for the system is defined as a 
mapping : { },∞→ ∪f P U u  where ∞u  is a dummy 
processor having infinite capacity, such that for all ∈u U  
we have: 

( ; )

,
∈

≤∑ p u
p P u f

w C  (1) 

where ( ; ) { : ( ) }.= ∈ =P u f p P f p u  The processes in 
( ) ( ; )∞=P f P u f  are not instantiated and, when this set is 

non-empty, the system is in degraded mode. 
An instance of the PMP problem is then specified by 

two arbitrary system states if  and tf  respectively referred 
to as the initial system state and the final system state or, for 
short, the initial state and the final state.3 

A process may be moved from one processor to another 
in two different ways: either it is migrated, in which case it 
consumes resources on both processors for the duration of 
the migration and this operation has virtually no impact on 
service, or it is interrupted, that is removed from the first 
processor and later restarted on the other one. Of course, 
this latter operation has an impact on service. Additionally, 
it is required that the capacity constraints (1) are always 
satisfied during the reconfiguration and that a process is 
moved (i.e., migrated or interrupted) at most once. This 
latest constraint is motivated by the fact that a process 
migration is far from being a lightweight operation [for 
reasons related to distributed data consistency which are out 
of the scope of this paper, see e.g., Jalote (1994)] and, as a 
consequence, it is desirable to avoid processes hopping 
around processors. 

Throughout this paper, when it is said that a move is 
interrupted, it is meant that the process associated to the 
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move is interrupted. This slightly abusive terminology 
significantly lightens our discourse. 

For each processor ,u  a process p  in ( ; ) \ ( ; )i tP u f P u f  
must be moved from u to ( ).tf p  Let M  denote the set of 
process moves thus induced by the initial and final states. 
Then for each , ,∈ m mm M w s  and mt  respectively denote 
the amount of resource consumed by the process moved by 

,m  the processor from which the process is moved that is 
the source of the move and the processor to which the 
process is moved that is the target of the move. Lastly, 

( ) { : }= ∈ =mS u m M s u  and ( ) { : }.= ∈ =mT u m M t u  
A pair ( , ),I σ  where ⊆I M  and : \ {1,...,| \ |}→M I M Iσ  

is a bijection, defines an admissible process move 
programme, if provided that the moves in I  are interrupted 
(for operational reasons, the interruptions are performed at 
the beginning) the other moves can be performed according 
to σ  without inducing any violation of the capacity 
constraints (1). Formally, ( , )I σ  is an admissible 
programme if for all \∈m M I  we have: 

( )\ ( )\
( ) ( ) ( ) ( )

,

′

′ ′ ′
′ ′ ′∈ ∈ ∈

′ ′= < <

≤ + + −∑ ∑ ∑m

m m
m m

m t m m m
m I m S t I m T t I
s t m m m m

w K w w w

σ σ σ σ

 (2) 

where ( ; )∈= − ∑
ip P u fu u pK C w  denotes the remaining capacity on 

processor u  in the initial state, thereby guaranteeing that the 
intermediate states are admissible. 

Also note that because the final state is admissible, we 
have for each processor .∈u U  

( ) ( )

0.
∈ ∈

+ − ≥∑ ∑u m m
m S u m T u

K w w  (3) 

Let mc  denote the cost of interrupting ,∈m M  the PMP 
problem then formally consists, given a set of moves, in 
finding a pair ( , )I σ  such that ( ) ∈= ∑ mm Ic I c  is minimum. 

3 Related work 

The PMP problem is now relatively well studied from an 
exact resolution perspective. Sirdey et al. (2007) have 
shown that the PMP problem is strongly NP-hard, exhibited 
some polynomially solvable special cases (the most notable 
one being | | 1=R  and =mw w  for all ∈m M ) as well as 
proposed a ‘combinatorial’ branch-and-bound algorithm for 
the general case (an extensive literature survey is also 
provided in that paper). Additionally, Sirdey and Kerivin 
(2006) have studied the problem from the point of view of 
polyhedral combinatorics, leading to an exact resolution 
branch-and-cut algorithm. In terms of approximate 
resolution, a computionally intensive, although quite 
theoretically sound, simulated annealing-based algorithm 
has been proposed by Sirdey et al. (2009). Still, as already 
stated in the introduction, for operational reasons related to 
the industrial context of this work, there is a need for fast, 
pragmatic approximate resolution algorithms. Thus, in this 
paper, we present such an algorithm based on the GRASP 
metaheuristic. 

4 GRASP in a nutshell 

GRASP4 is an approximate resolution algorithm design 
paradigm introduced in the nineties by Feo and Resende 
(1989, 1995). This paradigm is interesting for it combines 
two fairly natural techniques for heuristically dealing with 
hard combinatorial problems: greedy algorithms and local 
search. 

A GRASP is a multi-start heuristic, at each step a 
randomised greedy algorithm is used to build an admissible 
solution which neighbourhood is explored using a local 
search procedure. The best of these thus obtained solutions 
is output by the algorithm. 

Given a combinatorial optimisation problem, a greedy 
algorithm is an algorithm which iteratively builds an 
admissible solution by, at each iteration, making the 
decision resulting in the best objective function 
improvement, each such decisions being definitive. In 
general, greedy algorithms do not perform particularly well 
and randomisation is a valuable tool in order to improve 
their performances, as Karp (1991) puts it: 

“Often, the introduction of randomization 
suffices to convert a simple and naive 
deterministic algorithm with bad worst-case 
behavior into a randomized algorithm that 
performs well with high probability on every 
possible input.” 

The randomisation scheme usually employed in GRASP 
implementations has been proposed by Hart and Shogan 
(1987). At each iteration, the algorithm considers the best 
and worst objective function improvements, say +γ  and −γ  
respectively, and make a decision drawn uniformly from the 
set of decisions which improve the objective function by at 
least ( )+ − ++ −γ α γ γ  where [0,1].∈α  The parameter 
controls the amount of greediness: when 0=α  the 
algorithm systematically makes the decisions which best 
improve the objective function hence builds greedy 
solutions, whereas when 1=α  the algorithm builds random 
ones. 

In general, there is no guarantee for solutions built using 
a randomised greedy algorithm to be locally optimal with 
respect to a given neighbourhood structure. Hence, it is 
relevant to start a local search procedure at each or some 
(depending on the computational cost of the procedure) of 
the solutions provided by the construction phase. 

At present, GRASP seems to emerge as one of the 
leading paradigms for designing efficient approximate 
resolution algorithms for hard combinatorial optimisation 
problems. An evidence of this being that it has been 
successfully applied to a wide range of such problems; see 
the survey papers by Resende (1998) as well as by Resende 
and Ribeiro (2003). 

5 Application to the PMP problem 

This section outlines our GRASP for the PMP problem. We 
thus present the construction and local search phases as well 
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as detail how the two are glued together to obtain a proper 
GRASP. 

5.1 Construction phase 
Let I  denote the (initially empty) set of moves which are 
interrupted and R  denote the (initially equal to )M  set of 
moves which are yet neither ordered nor scheduled. Also, 
let σ  denote an ordering of the moves in \ ( )∪M I R  
which is admissible under the assumption that the moves in 
I  are interrupted and that the moves in R  are not 
performed i.e., that the associated process simply remains 
on the source processor. 

At each iteration, we then proceed as follows. 
Let ⊆X R  denote the set of moves which can be 

inserted in σ  without jeopardising its admissibility (as 
defined above). Until this set is non-empty, a move is drawn 
uniformly from max min{ : ( ) (1 ) ( )}∈ ≤ + −mm R c c R c Rα α  
removed from R  and added to .I  At that point, X  is  
non-empty and a move is then drawn uniformly from 

max min{ : ( ) (1 ) ( )}∈ ≥ + −mm X c c X c Xα α  removed from 
R  and inserted as early as possible into .σ  Lastly, the set 
I  is minimalised. Let ⊆Y I  be such that the new ordering 
σ  remains admissible if any move ∈m Y  is neither 
interrupted nor performed. Then a move is drawn uniformly 
from max min{ : ( ) (1 ) ( )}∈ ≥ + −mm Y c c Y c Yα α  removed 
from I  and added to ,R  until Y  ends up being empty. 

The above scheme is repeated until R  is empty. 
The ability for moves to switch back and forth between 

R  and I  is undoubtfully an important feature of the above 
algorithm. Indeed, interruption decisions are regularly 
challenged and potentially backtracked on. As an example, 
it leaves the possibility for one or more interruption 
decisions to eclipse a preceding one, therefore giving a 
second chance to the move associated to the latter. 

5.2 Local search phase 

The construction phase is completed by a local search phase 
based on a light-weight exchange strategy between \M I  
and .I  

Indeed, each iteration of the local search algorithm 
consists, for each scheduled move (i.e., each move in 

\M I ), say ,m  in checking whether interrupting it allows 
to insert a move ,′∈m I  with a cost higher than ,m  into .σ  
As soon as such a pair of moves is found, a new solution is 
generated in which m  is interrupted and ′m  is performed 
as early as possible. 

This process is repeated until no such pair exists, hence, 
until local optimality is established with respect to this 
simple neighbourhood structure. 

5.3 Putting it all together 

We have integrated the above construction and local search 
phases following the GRASP paradigm so as to obtain a fast 
heuristic for the PMP problem5. The fastness requirement  
 
 

implied a small number of iterations, | |M  log | |M  was 
chosen, as well as guided our choice of a strategy for the 
variation of .α  

Indeed, there are three main such strategies: self tune α  
according to the reactive procedure of Prais and Ribeiro 
(2000), draw α  uniformly from [0, 1] or draw from [0, 1] 
according to another probability distribution. Computational 
experiments reported by Resende and Ribeiro (2003) hint 
that when computation time is an issue, the uniform strategy 
offers the most appropriate trade-off, in particular compared 
to the reactive strategy which appears superior to the others 
at the cost of longer computation time. 

Hence, our GRASP algorithm reduces to repeating  
| |M  log | |M  times the construction phase of Section 5.1 
followed by the local search phase of Section 5.2, each time 
with a value of α  uniformly drawn from [0, 1]. The best of 
these thus obtained solutions is then returned. 

6 Computational experiments 

It should be emphasised that, following the discussion in  
the introduction, the purpose of this paper and of the 
experiments reported in this section is not to conclude on 
the relative calculation cost-to-performance ratio between 
our GRASP and other methods. Our goal is merely to 
illustrate the fact that our GRASP achieves the software 
engineering trade-off which was committed to in the 
introduction. As an algorithm which can be specified in a 
few pages, the implementation complexity of our GRASP is 
clearly under control. Thus, in this section, we further report 
on computational experiments carried out so as to assess the 
ability of our procedure to produce reasonably good 
solutions at low computational cost. 

These experiments have been performed on a Sun Ultra 
10 workstation with a 440 MHz Sparc microprocessor,  
512 Mo of memory and the Solaris 5.8 operating system. 
For reproductibility purpose, the instances used in the 
present experiments can be made available upon email 
request to the corresponding author. 

6.1 Instance generation 

Given U  the set of processors, C  the processor capacity 
and W  an upper bound on the process consumption, an 
instance is generated as follows. 

First, the set of processes is built by drawing 
consumptions uniformly in {1,..., }W  until | | .∈ ≥∑ pp Pw C U  
The initial state, ,if  is then generated by randomly 
assigning the processes to the processors: the processor to 
which a process is assigned is drawn uniformly from the set 
of processors which remaining capacity is sufficient (note 
that not all processes necessarily end up assigned to a 
processor). The final state, ,tf  is built in the very same way 
to the exception that only the processes which are assigned 
to a processor in the initial state are considered. An instance 
is considered valid only if all the processes assigned to a  
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processor in the initial state are also assigned to a processor 
in the final state. Invalid instances are discarded  
and the construction process is repeated until a valid 
instance is obtained (the rejection rate depends on the 
parameters, as an example, coarse estimates for | | 10,=U  

100=C  as well as 10=W  and 50=W  respectively are 
29% and 41%). The set of moves is then built as explained 
in Section 2. 

It should be emphasised that the above scheme generates 
instances for which the capacity constraints are extremely 
tight, instances which can be expected to be hard and, in 
particular, significantly harder than those occurring in 
practice. As an example, for | | 10,=U  100=C  and 10=W  
only 1.28% of free capacity remains, on average, on each of 
the processors. However, for the system to which this work 
is to be applied (see Sirdey et al., 2003) the maximum 
theoretical load of a processor ranges (non-linearly) from at 
most 50% (for a system with two processors) to at most 
around 93% (for a system with 14 processors, which is the 
maximum). This is so because some spare capacity is 
provisioned for fault tolerance purpose and this spare 
capacity is spread among all the processors. Additionally, it 
should be stressed that the system carries at most 100 
processes and that a preprocessing technique, based on the 
fact that the properties of a system state are invariant by a 
permutation of the processors, is used to decrease the 
number of moves by around 25% on average. It turned out 
that our GRASP was able to solve virtually all practical 
instances and that as a consequence, we had to consider 
more aggressive instance generation schemes, such as the 
above, in order to fairly evaluate the performances of the 
algorithm. 

Lastly, we have supposed that ,=m mc w  which is quite 
natural for our application as it is reasonable to assume that 
the amount of service provided by a process is proportional 
to the amount of resources it consumes. 

6.2 Computational results 
In order to reasonably explore the (practically relevant  
part of the) problem space we have used the scheme of 
Section 6.1 to generate a set of ten instances for  
each | | {2,...,14},∈U 6 each {10,20,...,90,100}∈W  and 

100.=C  Hence, a total of 1300 instances, amongst which 
only 1020 were considered of non-trivial size (up to 254 
moves) and used in our experiments. 

In fact, the instance base is the same that we  
used in order to assess the practical relevance of the  
branch-and-bound algorithm presented in Sirdey et al. 
(2007), the advantage being that the value of an optimum 
solution is known for many of these instances. This instance 
base was also used for the empirical evaluation of our 
simulated annealing algorithm (Sirdey et al., 2009). 

For each of the above ten instances sets, Table 1 
indicates the average problem size (i.e., the average number 
of moves), denoted | |,M  as well as an upper bound on the 

average optimality gap, denoted ,d  which we were  
able to (manually) prove using either the output of our 
branch-and-bound algorithm (Sirdey et al., 2007), i.e., 
which were solved to optimality by that algorithm, or, 
otherwise, the polyhedral lower bound introduced by Sirdey 
and Kerivin (2006). 

Despite slightly disappointing results on instances 
located within the small number of moves (say less than 20) 
and small number of processors (say less than seven)  
area (we shall come back to this), Table 1 illustrates  
the fairly good performances of our GRASP which achieves 
an overall average optimality gap of 1.68% (despite  
incomplete knowledge of the optimum values leading to 
some overestimation of that number). Indeed, in the  
eight to 14 processors area, the average upper bound 
obtained for the optimality gap is always below 4%  
(still despite incomplete knowledge of the optimum values). 
It turns out that when W  is high enough (typically above 
70) the instances are relatively small and, as a consequence, 
an optimum solution is known for many of them.  
Hence, the average optimality gap is relatively reliably 
estimated in that area and the good performances of the 
algorithm are illustrated. When W  is low enough  
(typically below 30), small costs solutions almost always 
exist and can be found by the algorithm as illustrated  
by the small average optimality gaps observed in the 
corresponding area. In between these two areas, the  
average optimality gap seems greater. This is nevertheless 
most likely explained by the fact that in that area there are 
less instances for which an optimum solution is  
known, hence, the gap estimation relies more on the 
polyhedral bound and this potentially leads to significant 
overestimation. 

Returning to the small number of moves and small 
number of processors area, it appears that the algorithm is 
able to solve most instances to optimality but, from time to 
time, fails to do so and produces solutions quite far from an 
optimal solution (gaps of up to 16% were observed). It turns 
out that this is imputable to the fact that the construction 
phase does not consider interrupting moves admissible for 
insertion in the partial ordering .σ  Indeed, we have shown 
in Sirdey et al. (2009) that an algorithm which does not 
consider such decisions may simply systematically miss all 
optimum solutions on certain pathological instances. The 
problem is that modifying the algorithm so as to take these 
decisions into account (which requires alternating  
overall emptying of R  and minimilisation of ,I  versus 
step-by-step, during the construction phase) allows to 
satisfactorily solve the small pathological instances but 
translates into a significant performance degradation on the 
remaining ones. A price which we are not prepared to pay. 
As the pathological instances are both very small, few in 
numbers and accessible in virtually no time to our  
branch-and-bound algorithm, we consider their existence 
only a minor nuisance. 
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Table 1 Average instance size, denoted | |,M  and an upper bound on the average optimality gap, denoted ,d  for each of the ten 
instances sets generated 

2  3  4  5 6  7  8 
\ | |W U  

| |M  d   | |M  d   | |M  d   | |M  d  | |M  d   | |M  d   | |M  d  

10 17.3 0.64  37.3 2.14  54.4 1.26  73.1 1.59  86.8 1.02  110.1 0.95  125.8 0.88 
20 8.2 2.01  19.5 0.69  26.7 1.33  35.0 2.78  46.7 1.48  56.5 1.53  64.1 1.13 
30 6.4 2.40  12.9 4.06  19.5 2.18  23.9 2.58  30.4 2.37  37.2 2.74  44.6 2.42 
40    9.9 1.73  12.5 2.97  19.3 2.64  22.9 0.95  28.1 2.72  33.9 2.33 
50       10.6 2.86  12.9 1.18  19.5 1.58  22.0 2.30  25.9 2.16 
60          13.2 2.82  14.6 3.12  18.1 4.30  21.4 3.05 
70             13.3 4.99  15.2 0.00  18.6 0.73 
80                11.9 0.00  15.4 0.00 
90                   12.9 0.00 

9  10  11  12  13  14 
\ | |W U  

| |M  d   | |M  d   | |M  d   | |M  d   | |M  d   | |M  d  

10 150.1 0.99  159.2 1.02  179.5 0.68  198.5 1.10  215.8 0.74  237.6 0.74 
20 75.6 1.26  82.1 0.88  92.5 1.16  102.6 0.70  111.1 1.43  122.4 1.92 
30 47.2 2.22  56.7 2.11  64.6 2.00  71.2 1.01  77.5 2.40  80.6 1.50 
40 37.3 2.20  45.7 2.48  48.0 2.36  51.6 2.03  56.8 2.29  58.6 1.51 
50 30.1 3.24  33.5 3.42  37.8 3.17  41.8 2.45  43.7 2.49  53.0 4.09 
60 25.8 2.00  29.5 2.42  29.2 1.94  31.8 1.65  35.3 3.24  40.8 3.33 
70 22.1 1.70  23.2 0.85  25.7 2.01  28.1 1.90  32.2 2.94  36.3 2.77 
80 17.3 0.00  19.0 0.92  21.2 0.32  25.1 0.31  25.5 0.51  28.4 0.00 
90 16.3 0.61  18.9 1.01  20.8 0.61  23.6 0.62  22.8 0.88  26.4 0.66 
100 12.8 0.00  15.8 0.29  17.9 0.00  18.2 0.08  19.6 0.72  22.7 0.56 

Note: | |U  denotes the number of processors and W  the maximum process consumption (see text). 
 

7 Conclusions 

In this paper, we have proposed a fast GRASP-based 
heuristic for the PMP problem, a strongly NP-hard 
scheduling problem which consists, starting from an 
arbitrary initial process distribution on the processors of a 
distributed system, in finding the least disruptive sequence 
of operations (non-impacting process migrations or 
temporary process interruptions) at the end of which the 
system ends up in another predefined arbitrary state. The 
main constraint is that the capacity of the processors must 
not be exceeded during the reconfiguration. This problem 
has applications in the design of high availability real-time 
distributed switching systems such as the one discussed in 
Sirdey et al. (2003). 

In particular, we have introduced a randomised  
greedy algorithm based on validity preserving insertions of 
moves within a valid partial ordering. This algorithm has  
the desirable property of challenging and potentially 
backtracking on interruption decisions at each step.  
A GRASP algorithm has then been designed by 
complementing the aforementioned algorithm with a 
lightweight local search scheme. 

Additionally, building on previous research on exact 
resolution procedures (Sirdey et al., 2007; Sirdey and 

Kerivin, 2006), we have reported on extensive 
computational experiments illustrating the ability of our 
algorithm to produce solutions within a few percents to 
optimality on a wide spectrum of ‘hard’ instances, hard in 
terms of both size and tightness of the capacity constraints. 
This is despite the presence of a few small pathological 
instances due to the fact that certain decisions are 
deliberately not considered during the construction phase. 
However, due to their small size, these pathological 
instances are easily accessible to exact resolution 
procedures. 

Lastly, it should be emphasised that as far as solving the 
PMP problem in the industrial setting in which it originally 
cropped up, the present GRASP-based heuristic has been 
considered the most suitable for, as intended, it achieves  
an appropriate software engineering trade-off in that 
context: low implementation complexity (to meet the 
software maintainability constraints), low computational 
cost (to meet the real-time constraints) and good enough 
performances. In particular, with respect to computational 
cost, this algorithm is around one order of magnitude  
faster than the simulated annealing scheme of Sirdey et al. 
(2009) and several orders of magnitude faster than the 
branch-and-bound algorithm of Sirdey et al. (2007).7 For 
these reasons, the present GRASP algorithm is intrinsically 
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practically superior to the other approaches reported in the 
literature, with respect to the present industrial context, and 
it thus turned out that this was the algorithm finally 
implemented in the target switching systems, as a result of a 
collegial engineering decision in which the first author took 
part. 
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Notes 
1 This research was done while Renaud Sirdey was a System 

Architect within Nortel GSM Access R&D, Châteaufort, 
France. 

2 Which, more often than not, is done by individuals other than 
the initial designer. 

3 Throughout the rest of this paper, it is assumed that 
( ) ( ) 0.= = /i tP f P f  When this is not the case the processes 

in ( ) \ ( )t iP f P f  should be stopped before the 
reconfiguration, hence, some resources are freed, the 
processes in ( ) \ ( )i tP f P f  should be started after the 

reconfiguration and the processes in ( ) ( )∩i tP f P f  are 
irrelevant. 

4 Greedy randomised adaptive search procedure. 
5 A ‘good’ computationally intensive heuristic is provided by 

our simulated annealing scheme (Sirdey et al., 2009). 
6 The choice for the values of | |U  is motivated by the fact that 

the system to which this work is to be applied contains at least 
two and at most 14 processors (Sirdey et al., 2003). 

7 Furthermore, this algorithm exhibits widely disparate 
computation times, as exact procedures for NP-hard problems 
usually do. Thus, provided the real time context of our 
application and its implementation cost which is higher than 
that of our GRASP, its practical relevance is limited to 
providing test instances used for the validation of 
approximate resolution an algorithm (which still makes it a 
precious practical tool). 


