
Minimizing task preemptions and migrations in multiprocessor optimal real-time
schedules

Thomas Megel, Renaud Sirdey, and Vincent David
CEA, LIST, Embedded Real Time Systems Laboratory

Point Courrier 94, F-91191 Gif-sur-Yvette, France.
Email: Firstname.Lastname@cea.fr

Abstract—We present a new approach to decrease task
preemptions and migrations in optimal global real-time sched-
ules on symmetric multiprocessors. Contrary to classical ap-
proaches, our method proceeds in two steps, one off-line to
place jobs on intervals and one on-line to schedule them
dynamically inside each interval. We propose a new linear
programming formulation and a local scheduler which ex-
hibits low complexity and produces few task preemptions and
migrations. We compare our approach with other optimal
scheduling algorithms, using the implicit-deadline periodic task
model. Simulation results illustrate the competitiveness of our
approach with respect to task preemptions and migrations.

I. INTRODUCTION

Among the several characteristics of global real-time
schedulers for multiprocessor systems, such as embedded
multicore architectures, a particularly important one is the
optimality of the underlying scheduling algorithm. That
is, whether or not the scheduler is guaranteed to obtain
a correct schedule (i.e. without missing any deadlines)
whenever the task set is feasible.

Non-optimal schedulers (e.g. Global-EDF, static-priority
class schedulers) generally exhibit fewer task preemptions
and migrations than optimal ones. However they do not
guarantee real-time constraints beyond specific utilization
bounds [8]. It is thus necessary to use more resources to
obtain correct schedules given the same task set. Moreover,
necessary and sufficient conditions for schedulability do
not always exist. Lastly, processors idle time cannot be
systematically avoided, so precious resources are wasted.
On-line optimal schedulers, achieving an utilization bound
equal to the system capacity, are often criticized with
respect to their complexity and the fact that they produce
many task preemptions and migrations. Consequently, they
are theoretically efficient but not necessarily relevant in
practice if we consider preemption and migration costs:
context switching and scheduling decisions may lead to
high overheads.

Recently, people have tried to improve feasibility tests
of non-optimal schedulers [4] because they produce less
preemptions than optimal ones. Our goal is to show that

it is also possible to use optimal schedulers with few task
preemptions and migrations.

There is a trend to privilege scheduling at job-boundary
instants such as Bfair [19], LLREF [9]. Our work follows
the same idea. We show that our problem is equivalent
to scheduling a finite job set on consecutive intervals.
Consequently, it is possible to use the job-boundary
weighted schedule representation already presented in [14].
This representation allows to express real-time constraints
in a linear form. Solving this linear system of inequalities
provides an exact feasibility test (necessary and sufficient
conditions for schedulability) and the correct amount of
jobs to schedule in each interval, dynamically. The linear
system, solved for example using the simplex algorithm,
usually has several solutions. In order to select a better
solution with respect to job migrations and preemptions we
propose a mixed integer formulation with suitable objective
functions.

Most schedulers are either entirely static or entirely
dynamic. Static ones generate a fixed schedule, so they
cannot handle unpredictable tasks as such (e.g. non-critical
event-triggered tasks with unknown release dates) or
execution hazards. We think that it is worth dividing the
scheduler work to decrease on-line complexity while still
allowing dynamic behavior, which leads to a more robust
system. From a methodological standpoint, it is usual
practice to invest in compilation time in the embedded
context, at least towards the end of the software cycle.

We consider in this study independent periodic tasks to ease
the comparison with other optimal/non-optimal schedulers.
Note that independent does not mean that we cannot handle
communication: for example, the synchronization problem
is possibly solved using lock-free mechanisms. As we will
see in section 3, our work can be extended to more general
task models such as the OASIS task model [10].

In the next section, we present related works. Section
3 defines our general approach and section 4 describes
our linear model. Section 5 evaluates the effectiveness of
the approach compared to known algorithms. Section 6
concludes about our contribution and presents future works.

2010 31st IEEE Real-Time Systems Symposium

1052-8725/10 $26.00 © 2010 IEEE

DOI 10.1109/RTSS.2010.22

37

II. RELATED WORKS

In the remaining sections, we use the following notations:
we consider a set Γ of N tasks executed on M processors,
each task T releases jobs periodically every period T.p. We
use the following terminology: we define HΓ the hyper-
period as the least common multiple and GΓ as the greatest
common divisor of all task periods in the Γ task set.

A. Optimal scheduling

Pfair class schedulers (PF [6], PD [5], PD2 [1]) achieve
optimal scheduling for periodic real-time tasks on multi-
processors. These algorithms are based on fluid scheduling
and try to follow closely the ideal allocation using a dynamic
behavior and a quantum-based approach: each task is di-
vided into quantum-sized pieces, called subtasks, which have
pseudo deadlines. As a consequence, all these schedulers
generate many preemptions, at most M∗HΓ per hyperperiod.
In the Pfair family, PD2 is known to be the most effective
of this class in terms of complexity (O(min(N,MlogN)).
Khemka et al. proposed a static optimal scheduling [13],
which is incrementally built on intervals based on GΓ

multiples. Tasks allocation priorities are given by increasing
task period. However, the complexity and the number of job
preemptions depend of the ratio between HΓ and GΓ which
leads to high overheads when periods are mutually prime.
LLREF [9] is another optimal algorithm which takes dy-
namic decisions on local intervals defined by job releases.
A time and local remaining execution-time plane abstraction
is used to show the two possible events on an local interval:
either a job ends or a job gets the priority (this job has a zero
local laxity). Jobs with largest remaining time are running
until one of these two events occurs. An upper bound of this
scheduler invocations is O(N).
EKG [2] is an algorithm based on EDF allowing task split-
ting in groups of K processors. It can be used as an optimal
one if there is no group (K = M , tasks can migrate on all
processors) or as a partitioned one (task can only migrate
within their group) but with limited utilization bound. It
produces job preemptions in function of the number of jobs
scheduled, at most 2 ∗K ∗N ′ where N ′ =

∑N
T∈Γ

HΓ
T.p .

B. Improvements

Some works have tried to improve existing optimal algo-
rithms in terms of task preemptions or migrations.
Zhu et al. proposed Boundary fair [19], an improvement
of Pfair that applies fluid scheduling only at job bound-
aries. At the beginning of each interval, a Fair approach
chooses which job to place and McNaughton’s algorithm
[15] schedules them: the number of job preemptions is
bounded by M − 1 on an interval. This scheduling is
pseudo dynamic (because scheduling is static between two
job boundaries) and its complexity is O(N). The authors
show from experimental results that job preemptions are
reduced from 25 to 50 % compared to Pfair.

Table I
OPTIMAL SCHEDULER CHARACTERISTICS COMPARATIVE

Algorithm
Name

Pfair [6]
[5] [1]

Bfair
[19]

LLREF
[9] [11]

SA
[13]

EKG
[2]

Allocation
type

dynamical pseudo
dynamical

dynamical static dynamical

Off-line
complexity

- - - O(N∗
HΓ/GΓ)

-

On-line
complexity

O(min(N,
Mlog(N))[1]

O(N) O(M)[11]
O(N)[9]

O(1) O(N)

Preemptions
bound on
interval

- M-1 N+1 - -

Preemptions
bound on
hyperperiod

M∗HΓ (M-1)∗
(1+X
T∈Γ

HΓ

T.p
)

(N+1)∗
(1+X
T∈Γ

HΓ

T.p
)

(M+N-
1)∗
HΓ/GΓ

2M∗X
T∈Γ

HΓ

T.p

Processor
type

identical identical identical uniform identical

Pfair migration improvement is also possible by adding some
heuristics. Aoun et al. [3] proposed some heuristics to guide
subtasks allocation such as keeping the scheduling of a task
on the same processor as much as possible or reducing the
migration of the subtasks of the same job. Their experimental
results show that the total number of migrations is reduced
from 40 to 60% compared to Pfair.
Funaoka et al. [11] showed that it is possible to significantly
reduce the number of task preemptions with an LLREF-
based algorithm. This is possible because this scheduler is
work-conserving (i.e. the algorithm never idles processors
if there is at least one task awaiting the execution in the
system): if there is idle time on an interval, the algorithm
tries to fill it with time apportionment. Intuitively, if a task
set uses less than the total processors capacity, then a work-
conserving scheduler allows less job divisions, and thus
causes less preemptions.

Table I summarizes a number of global optimal schedulers
theoretical properties. We use the fact that there are at most
1 +

∑
T∈Γ

HΓ
T.p intervals during an hyperperiod to evaluate

the maximum number of job preemptions for interval-based
schedulers. We compare the allocation type, off-line/on-line
complexity, job preemptions upper bounds on job-boundary
interval and on hyperperiod for full utilization task set, and
the type of processors schedulers are running.

III. GENERAL APPROACH

In this section we present the definitions needed to un-
derstand the schedule representations and the equivalence
between them. More precisely, we seek in our context to
execute a finite job set. We consider that scheduling a
periodic task set is equivalent to schedule a finite number
of jobs on intervals (from different lengths) defined by job
releases and repeatedly executed at each hyperperiod.
We use the fact that the job-boundary weighted schedule

38

(BWS) representation is adapted to our problem. As a
consequence, we express the corresponding linear system
Σ for the general approach and show how to solve it and
schedule its solution.

A. Definitions

Here we recall some definitions and results based on those
published in [14]. We consider a task set Γ composed by N
independent implicit-deadline periodic tasks.

Definition 1 Jobs and job set.
Given a task set Γ, each task T releases periodically (T.p)
jobs, each job j is described by its needed execution time
j.e and its deadline j.d.
All jobs scheduled during the hyperperiod HΓ belong to the
job set JΓ. As we aim to divide HΓ into several intervals,
we define Jk the subset of JΓ that contains all active jobs
in the kth interval (see Definition 3).

Definition 2 Schedule representations.
Given a job set J , a schedule representation associates
two objects: the set of its correct schedules SJ and an
execution function which represent the time spent executing
J . Classically we express four scheduling representations:
• CS: the concrete one (indicates when each job is

executed and on which processor, i.e. a Gantt chart).
• AS: the anonymous one (indicates when a job is

executed on a processor).
• WS: the weighted one (indicates which fraction of a

processor is allocated for a job and at which moment).
• BWS: the job-boundary weighted one (indicates which

fraction of a processor is allocated for a job with the
restriction that fractions only change at job boundaries).

Result 1
It has been shown that these 4 representations are equivalent,
the reader is referred to [14] for proofs and thorough
illustration of these representations.

Definition 3 Hyperperiod and job-boundary interval Ik.
It is sufficient to execute a task set on the hyperperiod to find
a complete schedule. Considering all jobs of all tasks JΓ,
it is possible to divide the hyperperiod duration in a finite
number of consecutive intervals defined by job releases (see
example Fig. 1). Given I the set of intervals and Ik the kth

interval, we define the duration |Ik| between time tk and
time tk+1:

|Ik| = tk+1 − tk
In our context, we always know the next job boundary i.e.
when time tk is reached then tk+1 is known. This is the case
for periodic task model, or more generally time-triggered
task model.

Definition 4 Job and subjob weight.
The weight wj of a job j ∈ J is defined as the fraction

of processor necessary to execute the job during the time
between its release date and its deadline. Given the fact that
a job j can be present on different intervals (i.e. a job can
be divided in several subjobs), we denote wj,k the subjob
weight of job j on interval Ik. As for jobs, the weight of
a subjob is defined as the amount of processor necessary to
execute job j but only on interval Ik.

Definition 5 Ej set.
Ej corresponds to the set of interval numbers in which
subjobs of job j can run: it can be one or several intervals.
For example job j22 on Fig. 1-a can be scheduled on interval
I2 and I3, so Ej22 ={2, 3}.

Result 2
As shown hereafter, a scheduling problem for finite job sets
can be expressed as a simple linear programming problem1.

B. Linear equalities and inequalities system presentation

We define our linear equation system Σ that allows:
• To verify schedulability of a given job set on a multi-

processor (composed of M identical processors).
• To obtain subjob weights on each interval, by solving

Σ (if the job set is schedulable).
First, we express the validity inequalities:

∀k,
∑
j∈Jk

wj,k ≤M (1)

∀k, ∀j, 0 ≤ wj,k ≤ 1 (2)

The first inequality (1) means that the sum of all subjob
weights on an interval does not exceed the processors
maximum capacity. The second one (2) expresses the fact
that each subjob weight does not exceed each processor
maximum capacity: it is a necessary condition to avoid that
the same subjob is executed at the same time on different
processors. Then we have the set of correctness equations,

∀j,
∑

k∈Ej

wj,k ∗ |Ik| = j.e (3)

describing that the duration of a job is equal to the sum of its
corresponding subjob durations, i.e. jobs must be completely
executed.

C. Solving approach

Solving the linear program Σ given by Eqs. (1), (2) and
(3) leads to find the set of weights wj,k if the task set is
feasible. If it is the case, the scheduling problem is reduced
to execute subjobs on consecutive intervals. On each interval
Ik, the corresponding subjobs have the same start time and
deadline, defined by interval boundaries and their execution
time are given by wj,k ∗ |Ik|. See example on Fig. 1-a:
we consider 3 periodic tasks T1, T2 and T3 releasing jobs

1which turns out to be a network flow problem, as shown in [7]

39

periodically (6, 9 and 18 respectively) with execution times
4, 6 and 12 respectively. Processor utilization is equal to
M = 2. We can write its corresponding system Σ1 as seen
in the previous section: solving Σ1 gives a set of weights
for its corresponding intervals (see Fig. 1-b). So it becomes
possible to apply appropriate algorithms to allocate these
subjobs on processors for each interval. There are several
schedulers for jobs with identical start times and deadlines
such as McNaughton [15], Gonzalez [12] and more recently
EDZL [18].

p1

p2

(a)

(b)

(c)

T1

T2

T3

I0 I1 I2 I3

I0 I1 I2 I3

4

j13

12 184

j12

64

j11

0

6

j22

9 186

j21

0

12

j3

0 18

j11 j12 j12 j3

j21 j21 j13

j3 j3 j3 j22

j11 j21 j12 j21 j12 j3 j13

j21 j3 j3 j3 j22

0 1 2 18

Figure 1. Example with 3 periodic tasks on 2 processors p1, p2: (a) tasks
T1, T2 and T3 release jobs periodically (6, 9 and 18 respectively) with
execution times 4, 6 and 12 respectively. (b) subjob durations sorted by
increasing execution time for each interval and for each job solving Σ1.
(c): a corresponding schedule with IZL.

All are suitable (optimal) but we propose another one that
is more appropriate because of its dynamic behavior, its
low complexity as well as its low task preemptions and
migrations bounds.

D. Scheduling description
Our scheduling algorithm, IZL2 (Incremental scheduling

with Zero Laxity), is an improved variant of an algorithm
from Lemerre et al. (called Algorithm 1 in their paper [14]).
This algorithm uses the following data structures:
• S is an array containing the set of running subjobs. If
Si is null, then processor i will be idle.

• P is a deque containing the processors with non-urgent
jobs (i.e. with positive local laxity). When a processor
runs a zero local laxity job, it is removed from P .

• Q is a deque containing the unfinished jobs sorted by
increasing execution time. Jobs in Q are the longest
remaining execution time jobs.

2IZL has been already succinctly described in short paper [16]

Function schedule(S, t) puts the jobs given by the array
S for the duration t on their respective processors, and for
each scheduled job j decrements its remaining time j.e, by
t. It also decrements the global remaining time R by t.
Finally, is empty, pop ∗, push ∗ are standard operations
on deque.

Algorithm IZL (inputs: Jk, Ik) on M identical processors
1 Q←Jk (requirement: jobs sorted by increasing execution time)
2 R←|Ik|
3 S←(null, null, ..., null)
4 for p from 1 to M do
5 if is empty(Q) then do
6 schedule(S, R)
7 return
8 end if
9 Sp ← pop first(Q)
10 push last(p in P)
11 end for
12 while ¬is empty(Q) do
13 pmin ← first(P)
14 L ← last(Q)
15 if Spmin .e ≥ R− L.e then do
16 schedule(S, R− L.e)
17 pmax ← pop last(P)
18 push first(Spmax in Q)
19 Spmax ← L
20 pop last(Q)
21 end if
22 else do
23 schedule(S,Spmin .e)
24 pmin ← pop first(P)
25 Spmin ← pop first(Q)
26 push last(pmin in P)
27 end if
28 end while
29 for all p in P do
30 schedule(S,Sp.e)
31 Sp ← null
32 end for
33 schedule(S, R)

As in Lemerre et al., IZL determines the next preemption
or migration instant only at the previous one. It works by
monitoring the longest tasks of Q and exclusively reserving
processors when they become urgent (”zero local laxity
events”, see j3 at t=2, Fig. 1-c). However, these events
are handled differently (l.15-21): reserved processors are
actually the one executing the longest running jobs (these
jobs are then removed and inserted at the head of Q to
free reserved processors). This method guarantees less
operations and jobs preemptions.

Invariants First, we have to identify the following
necessary invariants to prove algorithm correctness:

I.1 Q is sorted w.r.t the job durations, ∀j1, j2 ∈ Q:

j1 placed before j2 in Q ⇔ j1.e ≤ j2.e
I.2 P sorts the processors w.r.t the length of the job

they schedule, ∀p1, p2 ∈ P:

p1 placed before p2 in P ⇔ Sp1 .e ≤ Sp2 .e

40

I.3 A job can appear at most once in S ∪ Q
I.4 Jobs scheduled on P have the smallest remaining

time:

∀jS ∈ SP , jQ ∈ Q, jS .e ≤ jQ.e

I.5 At any moment, R is the remaining time before
the algorithm has been run for |Ik|

I.6 The jobs always meet the identical M-
multiprocessors schedulability conditions:

∀j ∈ Jk, j.e ≤ R (a) &
∑
j∈Jk

j.e ≤M ∗R (b)

Proofs of correctness
I.1) This invariant is true at the beginning (Q = Jk). Then,
there only are two types of operations on Q:
• Extract operation: we extract the first job of Q during

the first for loop (l.9) and when a job is finished (l.25).
Moreover, we only extract the last job of Q when its
laxity is zero (l.20). Remaining elements of the deque
are thus always sorted.

• Add operation: we only add a job that was running
at the beginning of Q (l.18). This means that this job
was selected because its execution time was less than
those remaining jobs of Q and as it was executed, its
execution time decreased (whereas those of Q did not
change). So adding a running job at the head of the
deque leads to a sorted deque.

I.2) P is always sorted regardless the 3 possible operations:
a) in the for loop allocating processor to sorted jobs, b) in
the if branch we extract pmax the last processor of P , c) in
the else branch pmin runs a new job so pmin is removed
and replaced at the end of P .

I.3) One can notice that at each time an element is extracted,
it corresponds to an allocation (Sp): l.9, l.14 then l.19-20 and
l.25.

I.4) In the for loop (l.4) shortest jobs are taken. In the
while loop, there are two cases: either a job is finished
so we replace it by the first remaining of Q (l.23-26) or
the longest running job is replaced by an urgent one and
the corresponding processor is extracted from P . So jobs
scheduled on P are always the shortest.

I.5) R is initially set to interval duration and decreases at
each time schedule is called (l.6, l.16, l.23, l.30, l.33).

I.6) At the beginning of the algorithm, conditions (a) and
(b) are verified by construction, see Eqs. (1) and (2). We
define t = min(R− L.e,Sp.e) and L = last(Q).
I.6-a) Thanks to invariant I.1, I.4 and I.5 we know that,

L.e ≤ R− (R− L.e)⇒ L.e ≤ t

∀j ∈ S ∪ Q, j.e ≤ L.e⇒ j.e ≤ L.e ≤ R− t

So, schedulability condition (a) is satisfied.

I.6-b) We divide the proof in two cases. The first case is
when |Jk| ≤M . Then Q is empty either before the end of
the for loop (this case is handled l.5-8) or at the end of the
second for loop (l.29-32). All jobs are running, so condition
(b) is verified. The second case is when |Jk| > M . We
always subtract the same quantity to both sides of inequality
(b) and only when schedule is called: at each while loop
iteration (either in the if branch or in the else branch) and at
the end (l.30 and l.33). This quantity is M ∗ t in the while
loop, M ∗ Sp.e in the second for loop and R (at the end).
So inequality (b) is always verified.

Proof of termination
Proof of termination is done by proving that the couple
(|P|, |Q|) is strictly decreasing:
• If the if branch is taken in the while loop, it becomes

(|P| − 1, |Q|).
• If the else branch is taken in the while loop, it becomes

(|P|, |Q| − 1).
The case (|P| = 0, |Q| > 0) is not possible, it would imply
that job set was infeasible. This is false by assumption. |P| =
0⇒ |Q| = 0, so the couple (|P|, |Q|) is strictly decreasing.

Properties
• The schedule is built incrementally which means that

it is work-conserving on the interval and dynamic.
• This algorithm has a low complexity: O(M) at the

beginning of an interval (l.4-11) and O(1) for all other
scheduler calls.

• The schedule exhibits at most M − 1 preemptions
and migrations for each interval Ik (as competitive as
McNaughton’s one). Migrations and preemptions only
happen when jobs of Q become urgent: an equivalent
number of processors are then removed from P . So, at
most M − 1 processors can be removed (as we have
seen above, |P| = 0 implies that all jobs are scheduled),
so there are at most M−1 migrations and preemptions.

In this section, we introduced several notions. We have seen
how to express real-time constraints through linear equalities
and inequalities (system Σ from Eqs. (1), (2) and (3)). We
used the job-boundary weighted schedule concept and its
equivalence with the concrete one. This linear program can,
for example, be solved by the simplex algorithm. Given a
solution, the problem is reduced to schedule subjobs with
same start times and deadlines. We have shown an efficient
algorithm (IZL) to schedule these subjobs. However, a linear
program without an objective function produces arbitrary
feasible solutions which are not necessary appropriate to
limit job preemptions and migrations (see Fig. 2-e,f). This
is why we propose to improve this approach by explicitly
taking job preemptions and migrations into account.

IV. AN INTEGER LINEAR MODEL

In this section, we propose a suitable mixed integer model
in order to guide the solution towards the polyhedron ver-

41

tices which induce less task preemptions and migrations. The
main idea is to add constraints to our linear system as well as
an objective function which aims at minimizing the number
of job preemptions (and by consequence migrations). It is
important to note that adding these constraints leaves the set
of fractional solutions unchanged.

A. Improvement using additive constraints
In a mixed integer linear programming (MILP) problem,

some of the variables are integer and others are continuous.
Our model uses boolean and integer variables: the linear
problem LP will be also transformed into an MILP. To
translate our needs to minimize task preemptions, one way is
to minimize the number of subjobs present on each interval.

Definition 6 Job presence in an interval.
To know if a job is present on a interval we use a boolean
variable: if its corresponding weight is strictly positive the
job will be executed, otherwise not. Given xj,k, a boolean
which indicates job presence on an interval Ik. We write it
as a constraint like this:

xj,k ≥ wj,k (4)

Remark 1 This variable provides necessary though not
sufficient condition for presence of a job on an interval. We
will address this later in this section.

In order to complete our method, we define now the job
preemption when a job j is divided into subjobs (i.e.
|Ej | > 1). Subjob weight positive on an interval and
becoming zero on the next one is a necessary condition for
the job to experience a preemption.

Definition 7 Job preemption.
Let yj,k be a boolean which is true when a preemption
occurs between interval Ik and Ik+1. We define yj,k such as:

yj,k =
{

1 if xj,k = 1 and xj,k+1 = 0
0 else (5)

Remark 2 It would be the same to define yj,k at 1 if xj,k = 0
and xj,k+1 = 1.
For each yj,k, this can be modeled using a quadratic con-
straint such as:

yj,k = xj,k(1− xj,k+1) (6)

Still, it is possible to linearize the above equation (6) by
replacing it by the following linear constraint set [17].

(6)⇔


xj,k − xj,k+1 − yj,k ≤ 0
−xj,k + yj,k ≤ 0
xj,k+1 + yj,k ≤ 1
−yj,k ≤ 0

With these additional constraints we are able to know where
job preemptions can appear and on which interval. Note
that for each job, there are less preemption variables than
presence variables (one less). In order to minimize the

number of times the situation happens, we propose to add
these constraints to the system Σ.

Objective functions
A first parameter which can be used is minimizing the

maximum number of job preemptions to bound all job
preemptions. We introduce an integer yj to count the number
of preemptions per job:

∀j, yj =
∑

k∈Ej\maxjEj

yj,k (7)

It remains to express how to influence the number of job
preemptions. Four possibilities are considered.

1) Minimization of the maximum number of preemptions.
This consists in counting the number of preemptions for each
job of each task and minimizing the max.

minimize (max
j
yj) with yj ∈ N (8)

It can be linearized as follows:{
∀j, b1 ≥ yj with b1 ∈ N
minimize b1

2) Minimization of the total number of preemptions.
This second way consists in adding preemptions of all jobs
of all tasks and to minimize the sum.

minimize (
∑

j

yj) (9)

3) Minimization of the total number of job presences.
This third approach expresses the need to minimize subjobs
presence: if we allow less subjob presences then we
minimize the number of job preemptions in each interval.
We first need to count subjob presences for each job, so we
introduce an integer xj :

∀j,
∑

k∈Ej

xj,k = xj (10)

It remains to minimize the sum of all xj :

minimize (
∑

j

xj) (11)

4) Minimization of the total number of job preemptions and
presences.
This last approach consists in summing preemptions and
presences of all jobs (or possibly weighted subjobs) of all
tasks and to minimize the sum of both. We express an
economic function using Eqs. (7) and (10):

minimize (
∑

j

xj + yj) (12)

Necessary limit for xj,k

A simple solution to solve our integer model is to assign
all the xj,k variables to 1, whatever minimization criteria

42

chosen. However wj,k will not be necessary strictly positive.
To avoid this and to solve issue discussed in remark 1, the
following approach is proposed.

Maximization of the subjob weights
This technique aims to maximize subjob weights when
subjobs are present on an interval (xj,k = 1). We use a real
variable: α ∈ [0; 1]. The goal is to search the maximum
value of α which allows to find a solution: the more α is
closer from 1, the lesser jobs are divided. The procedure
performs a dichotomy to find the critical value. Given
α ∈ [0, 1],{

∀j,∀k,wj,k ∗ |Ik| ≥ min(α ∗ j.e, |Ik|) ∗ xj,k

maximize α (13)

The value α ∗ j.e could exceed |Ik| if α is too high which
leads to find no solutions (Eq. (2) would be in contradiction
with Eq. (13)), so we bound it using a min function.

We now summarize the 4 linear programs corresponding to
our 4 objectives functions:

Minimize b1/2/3/4 with


b1 ≥ yj , b1 ∈ N,∀j
b2 =

∑
j yj , b2 ∈ N

b3 =
∑

j xj , b3 ∈ N
b4 =

∑
j xj + yj , b4 ∈ N

s. t.
∀j, xj =

∑
k∈Ej

xj,k and yj =
∑

k∈Ej\maxjEj
yj,k

∀yj,k,


xj,k − xj,k+1 − yj,k ≤ 0
−xj,k + yj,k ≤ 0
xj,k+1 + yj,k ≤ 1
−yj,k ≤ 0

∀j,∀k,
{
xj,k ≥ wj,k

wj,k ∗ |Ik| ≥ α ∗ j.e ∗ xj,k, α ∈ [0, 1]

∀j,


∑

j∈Jk
wj,k ≤M, ∀k

0 ≤ wj,k ≤ 1, ∀k∑
k∈Ej

wj,k ∗ |Ik| = j.e
(14)

All these criteria form our integer model: four linear pro-
grams are considered separately (objective b1, b2, b3 and
b4 correspond to Eqs. (8), (9), (11) and (12)) i.e. we have
exactly four distinct objective functions.
We propose several ways to minimize job preemptions
because these different minimization criteria may generate
different results and sometimes one of those may be more
appropriate for particular task sets. In order to illustrate
our approach we present in the next section the scheduling
results for one of these objective functions compared to other
global schedulers.

B. Scheduling example
We consider the following example initially proposed by

Zhu et al. [19] to compare Pfair and Bfair: 6 implicit-
deadline periodic tasks (T.e,T.p): T1=(2,5), T2=(3,15),
T3=(3,15), T4=(2,6), T5=(20,30), T6=(6,30). The system

utilization is
∑6

T∈Γ
T.e
T.p

= 2 and HΓ = 30. We can notice

2

1
25 302

1
202

1
15 2

1
152

1
102

1
52

1
0

3

2
15 303

2
0

3

3
15 303

3
0

2

4
24 302

4
182

4
122

4
62

4
0

20

5
0 30

6

6
0 30

0 1 2 30

1 2 1 1 5 5 5 5 5 5 5 1 4

4 3 5 4 6 1 4 6 1 2 4 1 2 3 6 6

0 1 2 30

1 4 1 3 2 1 4 1 3 2 4 1 1 4 2 1 4 1 3 2 1 4 1 3 2 4 1 4 3 1

5 5 6 5 5 4 5 5 6 5 5 6 5 5 3 5 5 6 5 5 4 5 5 6 5 5 6 5 5 2

0 1 2 30

1 2 3 4 1 1 2 3 4 1 2 1 3 4 1 2 3 4 1 2 3 5 1 2 3 4

4 5 6 5 5 6 4 5 5 6 4 5 5 6 4 5 6 4 5 6

0 1 2 30

1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6

4 5 4 5 4 5 4 5 4 5

0 1 2 30

3 1 4 2 1 4 1 4 3 4 1 5 1 4 5 1 3

6 2 5 5 5 6 5 5 6 5 6 4 2

0 1 2 30

1 3 2 1 2 4 4 1 4 1 4 1 3 1 1 2

4 6 5 5 5 5 5 5 5 5 4 6

(a)

(b)

(c)

(d)

(e)

(f)

p1

p2

p1

p2

p1

p2

p1

p2

p1

p2

p1

p2

Non-optimal scheduler: EDZL

Optimal scheduler: Pfair

Optimal scheduler: Bfair

Optimal scheduler: Khemka

Our optimal approach without objective (e) and with objective b2 (f)

Figure 2. Scheduling example with different algorithms. From top to
bottom, context switches and migrations (for 2 processors) are (19,5),
(47,7), (40,9), (32,0), (25,6) and (19,2) respectively.

for example that our approach (Fig. 2-f) does not divide
T5 which is the largest task of the set contrary to all other
schedulers and contrary to our approach without objective
(Fig. 2-e). We also induce less migrations than EDZL on
this example. Our solution presented Fig. 2-f is provided
by objective function 2. The other objective functions are
slightly less powerful but remain interesting: they all pro-
duced less context switches than other optimal schedulers.
Table II shows scheduling results for each objective function.
It confirms that :

1) Several correct solutions can be found from our dif-
ferent objective functions.

43

2) Solutions are not necessary equivalent in terms of
context switches and migrations.

Table II
SCHEDULING COMPARISON BETWEEN THE 4 LINEAR PROGRAMS WITH

OBJECTIVE FUNCTIONS ON ZHU EXAMPLE

Objective Context switches Task migrations
without (only Σ) 25 6
1 (minimize b1) 22 4
2 (minimize b2) 19 2
3 (minimize b3) 23 9
4 (minimize b4) 22 6

Switching technique
As we dynamically schedule subjob sets interval after in-
terval, there is no link between intervals: our dynamic
scheduling is not aware of the past. For example, if a subjob
j is at the end of Ik−1 on processor p, and is also present
on the next interval, the scheduler decision will not take this
into account to place this subjob on the same processor p.
In order to mitigate this issue and so reduce job migrations,
we propose a simple on-line method: we use the fact that,
given a valid schedule allocating each task to a processor,
the schedule remains valid if we permute a processor with
another one.

Procedure
Given a local scheduler and Jk the job set to execute on Ik:

1) At setup time, the scheduler chooses the M first
allocated jobs J ⊆ Jk.

2) If there were jobs (J ′ ⊆ Ik−1) scheduled at the end of
interval Ik−1, select the C common jobs (C = J ∪J ′)
one by one and permute allocated processors in order
to avoid job migration.

3) If C 6= ∅, select the J−C remaining jobs and allocate
them to the remaining processors.

This permutation takes place only at each job boundary
and needs to be transparent for the scheduler so there
is a temporary virtual mapping of processors. Moreover,
the complexity of this procedure is O(M). For the local
scheduler, if we use IZL, we slightly increase its complexity
at setup time. See for example Fig. 3, with J ′ = {j12, j3},
J = {j3, j22} and C = {j3}.

I2 I3 I2 I3

j12 j3 j13 j12 j22

j3 j22 j3 j3 j13

p1

p2

⇔

(a) (b)

Figure 3. (a) End of scheduling example from fig. 1. (b) Equivalent
schedule by permutation of p1 and p2 at the beginning of interval I3.

In this section, we proposed a augmented integer model

of our linear program. This model is composed of four
objective functions that lead to minimize job preemptions
on each interval defined by job boundaries. By reducing
job preemptions, we limit also job migrations. In order to
improve our model we have seen how to link consecutive
intervals with a simple switching technique.

V. EXPERIMENTATION

In order to estimate the practical relevance of our ap-
proach in terms of task preemptions and migrations, we
conducted a simulation-based experimental study. To that
end, we developed a scheduler simulator on the hyperperiod.

A. Context and simulation setup
We consider here four optimal schedulers: Pfair, Bfair,

Khemka’s one and our approach. In our simulation, we use
100 task sets for each system utilization. Each task set is
generated with uniform period and execution time. Periods
are randomly generated between 10 and 100, execution
times between 1 and the period. We choose integer values
for period and execution times because of Pfair and Bfair
requirements. Utilization of each task (ui = Ti.e/Ti.p) is in
the range [0.01,1] and system utilization (U =

∑
i ui/M)

varies between 0.1 and 1. We reject task set with an
hyperperiod larger than 232.

We consider the following rules:
• We count each context switch3 as the exception of sub-

jobs running on the same processor during consecutive
intervals (presents at the end of one and at the beginning
of the next one), see for example j3 on Fig. 3-b.

• We count a job migration if a processor p executes a
job j at time t and another processor p′ executes the
same job at time t′ (t′ > t). We count a job migration
also if job does not belong to the same task release.

In order to measure the average number of context switches
and job migrations, 100 simulations are conducted (with
different task sets).

We then generate corresponding constraints for each task set
for all four objective functions. These constraints represent
our integer linear program. As we are looking for the critical
α value, we use a dichotomic procedure. Actually the solver
provides either no result (infeasible because of too high α)
or subjob weight results for each interval. After a success,
we schedule all subjob weights in each interval with IZL.
We choose finally for each U , the objective function which
on average produces the best schedule in terms of number of
context switches and task migrations. Note that it is possible
that a solution is not found for a particular task set on the
allotted time (the solving time is limited to 60 sec for each

3Note that we propose to count the number of context switches instead
of the number of ”job preemptions” to ease the measures. There is no
difference in our case because minimizing job preemptions leads to less
context switches. In the sequel, we will use both terms without distinction.

44

task set). The solver used is ILOG Cplex. Three possible
solving cases occur for any objective functions:
• The solver finds the best integer solution (the best case).
• After the time limit, the solver finds an approximate

solution (near the best).
• After the time limit, the solver finds no integer solution.

As we will see in the next section, the two last cases occur
marginally in our practical simulations.

B. Results
We call our approach : MILP with IZL. Figure 4 and

5 show the results of job preemptions/migrations for each
algorithm according to system utilizations: horizontal axis
corresponds to the system utilization and vertical axis cor-
responds to the average number of job preemptions on the
hyperperiod normalized by the number of task sets. Pfair
schedules produce a huge number of preemptions from
U = 0.6, so we decided to truncate the highest numbers on
the curves. Note that this is the same behavior for Bfair and
Khemka’s one. In Fig. 4, our approach is the lowest curve
followed by Bfair, Khemka’s one and Pfair. Job preemptions
are between two and three times inferior to others optimal
schedulers for task utilization comprised from U = 0.1 to
0.5. For higher utilization, the gap considerably increases.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5,000

10,000

15,000

System utilization

Av
era

ge
nu

mb
er

of
job

pre
em

pti
on

s Pfair
SA
Bfair
MILP with IZL

Figure 4. Number of job preemptions for M = 4, U = [0.1, 1]

Figure 5 shows the results of job migrations for each algo-
rithms. For U = 0.1: Bfair is first followed by our approach
and the others. From U = 0.2 to 0.7, our approach and
Khemka’s one are very close, followed by other schedulers.
For higher utilization, our approach outperforms the others.

Our four approaches generate different schedules which are
not equivalent with respect to system utilization: for example
best results are obtained either with objective 3 (minimiza-
tion of job presences) for low utilization or objective 4
(minimization of both presences and preemptions) for high
utilization. The α factor varies practically between 0 and 1,
and as expected the more utilization system is high the more
α decreases: values close to zero are often found for high
utilization system.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5,000

10,000

System utilization

Av
era

ge
nu

mb
er

of
job

mi
gra

tio
ns Pfair

SA
Bfair
MILP with IZL

Figure 5. Number of job migrations for M = 4, U = [0.1, 1]

Towards a lower bound
We are also interested to know how far we are from a lower
bound of task preemptions and migrations. Without knowing
it, we compared our approach to EDZL, a non-optimal
scheduler (for periodic tasks) known to be more efficient
than Global-EDF and to produce few task preemptions [18].
Simulations show close results for low utilizations. We
generate more preemptions than EDZL: between 3% and
31% for system utilization between 0.1 and 0.7. For higher
utilization, percentage increases until 300% but EDZL starts
to miss its deadlines: the number of correct schedules drops
significantly. At U = 0.8, EDZL fails on 20% of task sets
and until near from 100% for U = 1. Concerning migrations,
EDZL schedules produce the smallest numbers except for a
system utilization of U = 0.1. For higher system utilization,
our approach produces until five times more migrations than
EDZL, but EDZL starts to miss deadlines.

No solutions or approximate solution found
As we expect, some constraint sets (from task sets) provided
to the solver do not allow to find a solution for our four
objective functions during the solving pass, but there are
only few cases on high system utilization, as shown in table
III. Another case is met and corresponds to approximate
solutions. The time limit invested to let Cplex solving is
relatively short (60 sec). It is acceptable to increase this
solution time if the user always wants solutions or only exact
solutions. There is a trade-off to find between invested time
and finding exact solutions. During our experiments, the off-

Table III
NUMBER OF UNSOLVED TASK SETS FUNCTION OF SYSTEM UTILIZATION

System utilization percentage of missed solutions
(with 60 sec for the solver)

0-0.5 0%
0.6 3%
0.7 6%

0.8-0.9 8%
1 10%

45

line part (solver, dichotomic procedure) takes between 10
sec and 10 min: this time increases with respect to system
utilization.

VI. CONCLUSION

We proposed a new approach to find optimal global
real-time schedules on symmetric multiprocessors with
task preemption and migration constraints. Contrary to
classical approaches, our method is divided in one off-line
part and one on-line part. As we have seen, our problem
is equivalent to scheduling finite job sets on consecutive
intervals and thus it is possible to base our method on
the job-boundary weighted schedule representation. This
representation allows to express real-time constraints
with a linear program. Solving this program provides an
exact feasibility test and finds a valid weight set for each
interval. We also proposed an integer linear model: we
expressed job preemption and presence and we proposed
four suitable objective functions which lead to different
correct schedules. The on-line part consists in scheduling
with an appropriate local scheduler. We chose IZL for its
low complexity, its dynamic behavior, its job preemptions
and migrations bounds.

Our approach allows to significantly decrease job
preemptions and migrations for the periodic task model.
Results show that we generate less job preemptions and
migrations than other optimal schedules. However, it
should be emphasized that our approach may require a
significant (several minutes) but acceptable investment in
off-line computation time when the number of tasks, the
system utilization or the hyperperiod, increase. Still, the
improvements induced at run-time appears to be worth that
investment (furthermore, as already stated, relatively long
compilation durations are common place in the embedded
market). Furthermore, it is possible to find a correct
trade-off between time used for off-line part and available
user time.

In future works, we want to complete our experiments
varying the number of processors and adding some other
optimal schedulers such as [11] or other non-optimal ones.
Moreover, we need to investigate the computational com-
plexity of our MILP and subsequently study faster (though
not necessarily exact) resolution algorithms to tackle bigger
instances. From a practical viewpoint, it would be interesting
to extend schedulability test so as to account for preemption
and migration costs. Also, the issue of optimizing the mem-
ory footprint of the scheduler working data (weight sets)
should be given further attention, for instances with large
hyperperiod. Finally we would like to apply our method to
time-triggered task models [10].

ACKNOWLEDGMENT

The authors wish to thank Matthieu Lemerre for relevant
advices while the present research was carried out.

REFERENCES

[1] J. H. Anderson and A. Srinivasan. Early-Release Fair Schedul-
ing. In Proceedings of the Euromicro Conference on Real-Time
Systems, pages 3543, 2000.

[2] J. Andersson, Bjorn and Tovar, Eduardo, Multiprocessor
Scheduling with Few Preemptions. In Proceedings of the 12th
IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 322–334, 2006.

[3] D. Aoun, A.M. Déplanche, Y. Trinquet, Pfair scheduling
improvement to reduce interprocessor migrations, 16th Int.
Conf. on Real-Time and Network Systems, RTNS’08, 2008.

[4] T. P. Baker. Comparison of empirical success rates of global
vs. partitioned fixed-priority EDF scheduling for hard real
time. Technical Report TR-050601, Department of Computer
Science, Florida State University, Tallahassee.

[5] S. Baruah, J. Gehrke, and C. Plaxton. Fast Scheduling of
Periodic Tasks on Multiple Resources. In Proceedings of the
9th IPPS, pages 280-288, 1995.

[6] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate
progress: a notion of fairness in resource allocation, Algorith-
mica 15 (1996) 600-625.

[7] P. Bratley, M. Florian, and P. Robillard. Scheduling with
earliest start and due date constraints, Nav. Res. Log. Quart.,
vol. 18, Dec. 1971.

[8] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Ander-
son and S. Baruah, Categorization of Real-time Multiproces-
sor Scheduling Problems and Algorithms, in Handbook on
Scheduling Algorithms, Methods, and Models, 2004, Chapman
Hall/CRC, Boca.

[9] H. Cho, B. Ravindran, and E. D. Jensen. An Optimal Real-Time
Scheduling Algorithm for Multiprocessors. In Proceedings of
the IEEE Real-Time Systems Symposium, pages 101-110, 2006.

[10] D. Chabrol, V. David, C. Aussaguès, S. Louise and F. Dau-
mas, Deterministic distributed safety-critical real-time systems
within the oasis approach. In 17th IASTED PDCS’05, 2005.

[11] K. Funaoka, S. Kato, and N. Yamasaki. Work-Conserving
Optimal Real-Time Scheduling on Multiprocessors. In Proc. of
the 20th Euromicro Conference on Real-Time Systems, 2008.

[12] T. Gonzalez and S. Sahni. Preemptive scheduling of uniform
processor systems. J. ACM, 25(1):92-101, 1978.

[13] Khemka, Ashok and Shyamasundar, R. K.. An optimal multi-
processor real-time scheduling algorithm, In J. Parallel Distrib.
Comput., vol.3, n1, pages 37-45, 1997.

[14] M. Lemerre, V. David, C. Aussaguès and G. Vidal-Naquet,
Equivalence between schedule representations: theory and
applications. In Proceedings of the 14th IEEE RTAS’08, 2008.

[15] R. McNaughton, Scheduling with deadlines and loss func-
tions, In Management Science, 1959.

[16] T. Megel, V. David, D. Chabrol and C. Fraboul, Dynamic
Scheduling of Real-Time Tasks on Multicore Architectures, In
Colloque du GdR Soc/SiP, 2009, Orsay.

[17] M. Padberg, Zero-one decision problems, GBA-Report No.
76-29, April 1976, New York University. Published (in Ger-
man) in: M. Beckmann et al. (eds.), HandwiSrterbuch der
Mathematischen Wirtschafts-wissenschaften (Gabler-Verlag,
Wiesbaden, 1978) pp. 187-229.

[18] Hsin-Wen Wei, Yi-Hsiung Chao, Shun-Shii Lin, Kwei-Jay Lin
and Wei-Kuan Shih, Current Results on EDZL Scheduling for
Multiprocessor Real-Time Systems, In Proceedings of the 13th
IEEE RTCSA, pp.120-130, 2007.

[19] D. Zhu, D. Mossé and R. Melhem. Multiple-resource peri-
odic scheduling problem: how much fairness is necessary? In
RTSS’03: Proceedings of the 24th IEEE International Real-
Time Systems Symposium, page 142, 2003.

46

