
Speculative data prefetching for branching
structures in dataflow programms

Sergiu Carpov a,b,1 Renaud Sirdey a,1 Jacques Carlier b,1

Dritan Nace b,1

a CEA LIST,
Embedded Real Time Systems Laboratory,

Point Courrier 94, Gif-sur-Yvette, 91191 France.
b UMR CNRS 6599 Heudiasyc,

Université de Technologie de Compiègne,
BP 20529, 60205 Compiègne Cedex, France.

Abstract

This paper deals, to some extent, with the problem of speculative data prefetching
for dataflow programming models. We focus on finding optimum prefetch strategies
for a simple n-way dataflow branching structure with respect to several objective
functions and exhibit polynomial algorithms for doing so.

Keywords: Knapsack, Shortest Path, Parallel Computing, OR in Compilation.

1 Introduction

With the frequency version of Moore’s law coming to an end, a new generation
of massively multi-core microprocessors is emerging. This has triggered a
regain of interest for the so-called dataflow programming models in which one

1 Emails: [sergiu.carpov,renaud.sirdey]@cea.fr, [carlier,dnace]@hds.utc.fr

Electronic Notes in Discrete Mathematics 36 (2010) 119–126

1571-0653/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2010.05.016

http://www.elsevier.com/locate/endm

Fig. 1. An n-output branching structure.

expresses computation-intensive applications as networks of processes (also
called agents) communicating through (and only through) FIFO channels [4,2].

In particular, one central issue is to efficiently use the bandwidth between
the (huge) off-chip external memory and the (scarce) on-chip one in order to
keep the many processing cores fed with data and, hence, busy. Doing so relies
heavily on prefetching data from this off-chip memory, that is loading data on-
chip before it is effectively needed. To achieve high performances in presence
of data dependent control, one should further speculate on data prefetching,
that is, loading data before it is even known whether it is needed or not.

In this paper, we consider an n-output branching structure as depicted
on Fig. 1. Let ρi denote the time required for loading the data on which
the tasks in the i-th branch depend and let τi denote the execution time of
those tasks (assuming all the off-chip data have been loaded). We further
assume that there are no common data between branches (a mildly restrictive
assumption that will be relaxed in a subsequent paper). Our goal, is then to
find optimal data prefetching strategies so as to minimize objective functions
as the mathematical expectation and the worst-case of the execution time.

In both cases, two different prefetching strategies are examined: a frac-
tional strategy, in which one is allowed to prefetch only fractions of branch
data, and an all-or-nothing strategy in which this possibility is not allowed.

This paper, is organized as follows. Section 2 focuses on mathematical
expectation, Section 3 deals with the more complicated case of worst-case
execution time and Section 4 concludes.

2 Mathematical expectation of the execution time

We start by investigating the fractional prefetching problem with the math-
ematical expectation of the execution time as objective. For an n-output
branching structure, let pi denote the probability of the i-th branch to be
executed 2 (

∑
i pi = 1). Also suppose that the available prefetching time is

constant and denoted by t (after this time elapses, one and only one of the

2 It is further assumed that subsequent decisions are independent

S. Carpov et al. / Electronic Notes in Discrete Mathematics 36 (2010) 119–126120

Fig. 2. Example of a 2-output branching structure execution.

branches is executed). We look for optimal prefetching durations 0 ≤ αi ≤ ρi,
such that the mathematical expectation of the execution time is minimal. An
example of a 2-output branching structure execution is presented in Fig. 2.

The available prefetching time t can take any value in the range D =
[0,

∑
i ρi[, so the degenerate case, when all the data can be prefetched, is

omitted.

This problem can be formulated as a linear program. Indeed, the following
linear program minimizes the mathematical expectation of the execution time
for a branching structure under a prefetching time constraint:

Minimize
∑

i

pi (ρi − αi + τi)

s.t.
∑

i

αi = t

αi ∈ [0, ρi] , ∀i

⇒

Maximize
∑

i

piρixi

s.t.
∑

i

ρixi = t

xi ∈ [0, 1] , ∀i

The last linear program is obtained by substituting αi = ρixi and taking the
complement of objective function, knowing that

∑
i pi (ρi + τi) is constant.

This program is nothing else but the linear programming form of the frac-
tional knapsack problem, which can be solved exactly in polynomial time using
the well-known Dantzig algorithm [3]. This algorithm consists in prefetching
the branches in decreasing order of their probabilities, as long as the prefetch-
ing time allows it.

Although elementary, this is a very interesting result: we obtain a solution
which structure does not depend on the available prefething time t. Futher-
more, the branches are prefetched in decreasing order of their probabilities,
that is, a branch is entirely loaded before the next branch will start to be
prefetched. Thus, the resolution of the fractional, in fact, gives an optimum,
robust all-or-nothing strategy.

Of course, when the branch probabilities are equal, the order in which the
branches are prefetched does not matter. This model is interesting in an iter-
ative compilation process [1], when in function of empirical results (gathered
by running the application), accurate estimates of the probabilities can be
obtained.

S. Carpov et al. / Electronic Notes in Discrete Mathematics 36 (2010) 119–126 121

3 Worst-case execution time

As in the previous section, we begin by investigating the fractional prefetching
problem, and then, consider the all-or-nothing case.

3.1 Fractional prefetch

As previously, let us consider an n-output branching structure, and suppose
that the available prefetching time is constant and equal to t. We look for
optimal prefetching durations 0 ≤ αi ≤ ρi, such that the worst-case execution
time is minimal.

During the prefetching period (see Fig. 2), branch i is prefetched for αi

time. If the branch i is executed, then the execution time will be equal to
ρi − αi + τi. Our goal is to minimize the worst-case execution time, thus the
largest one of these terms. The problem can be stated as a mathematical
program, which can be easily rewritten as a linear program:

Minimize max
i

(ρi − αi + τi)

s.t.
∑

i

αi = t

αi ∈ [0, ρi] , ∀i

⇒

Minimize Γ

s.t. ρi − αi + τi ≤ Γ, ∀i∑
i

αi = t

αi ∈ [0, ρi] , ∀i

Proposition 3.1. Let K be the set of branches that verify relation τk + ρk ≤
maxi τi, k ∈ K. The branches from K do not influence the value of the worst-
case execution time.

Proof. Let αi be the optimal prefetching durations. If after the prefetching
period a branch belonging to K is executed then the worst case execution time
cannot be lower than maxi τi.

Hence, without loss of generality we suppose that mink (τk + ρk) > maxi τi

is verified.

3.2 All-or-nothing prefetch

Contrary to the expectation case, the solution of the fractional problem does
not hint at an optimum prefetching time independent all-or-nothing strategy.
The purpose of this section is to find such a solution although it does not in
the general case always realize the smallest worst-case execution time.

Before describing the problem, we introduce some preliminary notions.

S. Carpov et al. / Electronic Notes in Discrete Mathematics 36 (2010) 119–126122

Let σ ∈ Π (n) be a branch prefetching order. The time at which the branch
at position k in the order σ is prefetched, is denoted by lk =

∑
i≤k ρσ(i).

Definition 3.2. Let fσ : D → [maxi τi, maxi (τi + ρi)] be a bijection, such that
fσ (t) equals to the worst-case execution time when the available prefetching
time is t ∈ D. Then, for any k = 1, . . . , n and t ∈ [lk−1, lk[we have:

fσ (t) = max
(
Λk, ρσ(k) + τσ(k) − t + lk−1

)
,

where Λk =

{
maxi>k

(
τσ(i) + ρσ(i)

)
if k < n,

maxi τi otherwise.

The all-or-nothing prefetch problem with worst-case execution time min-
imization is formulated as follows. Let us consider an n-output branching
structure. We look for a branch prefetching order σ ∈ Π (n), such that for any
σ′ ∈ Π (n), t ∈ D relation fσ (t) ≤ fσ′ (t) is verified.

The problem defined above can have instances for which the solution space
is empty. This result is proved in the next proposition.

Proposition 3.3. An order σ ∈ Π (n), that minimizes the worst-case execu-
tion time fσ for any t ∈ D, cannot be always found.

Proof. To prove it, we provide an example for which an order that minimizes
fσ does not exist.

Suppose a 2-output branching structure, such that the relations ρ1 + τ1 <
ρ2 +τ2 and τ1 > τ2 are verified. The two possible branch orders are σ1 = 〈1, 2〉
and σ2 = 〈2, 1〉. It is easy to see that if t ∈ [0, τ2 + ρ2 − τ1[then fσ2 (t) ≤
fσ1 (t), and, if t ∈ [τ2 + ρ2 − τ1, ρ1 + ρ2] then fσ1 (t) ≤ fσ2 (t). Thus, for this
particular case functions fσ1 and fσ2 can not be compared. We conclude that,
in the general case, also, an order that minimizes the worst-case execution
time is not always defined.

Rather than attempting to compute a Pareto front, we modify the objective
function as follows: we look for a branch prefetching order σ ∈ Π (n), such that
for any σ′ ∈ Π (n) we have E [fσ (t)] ≤ E [fσ′ (t)] assuming that the available
prefetching time is uniformly distributed over D.

Therefore, we have:

E [fσ (t)] =

∫
D

fσ (t)
1∑
i ρi

dt =

(∫
D

fσ (t) dt

)
1∑
i ρi

Thus, the minimization of the worst-case execution time expectation is
equivalent to the minimization of the area of the region bounded by the worst-

S. Carpov et al. / Electronic Notes in Discrete Mathematics 36 (2010) 119–126 123

Fig. 3. Illustration of the contradiction from Proposition 3.5.

case execution time function. The integral of the worst-case execution time
function over the range [lk−1, lk[is equal to:

∫ lk

lk−1

fσ (t) dt = Λkρk +
1

2
max

(
0, ρσ(k) + τσ(k) − Λk

)2

In what follows, we suppose that the branches are numbered in the de-
creasing order of τi + ρi, that is ρ1 + τ1 ≥ ρ2 + τ2 ≥ . . . ≥ ρn + τn.

Proposition 3.4. Let σ be the optimal branch prefetching order. If in this
order branches p + 1, . . . , r are ordered before the branch p, then their order
does not matter.

Proof. Since ρp + τp is greater than or equal to ρp+1 + τp+1, . . . , ρr + τr the
worst-case execution time fσ (t) during the prefetch of branches p+1, . . . , r is
equal to ρp + τp. Therefore, the integral of fσ (t), over the interval when the
branches p+ 1, . . . , r are prefetched, is constant and does not depend on their
order.

Proposition 3.5. If σ is an optimal branch prefetching order, then it has the
following form: σ = 〈r, . . . , 1, σ′〉, r ≥ 1, where σ′ is an optimal order over
the branches r + 1 . . . n.

Proof. Let r be the branch with the largest index ordered before the branch
1 in σ, that is, r is the branch with the lowest τi +ρiordered before the branch
1. Suppose that a branch k, k ∈ [2, r − 1], is ordered after the branch 1. By
interchanging branch r with 1 (see Fig. 3) we obtain a new subset suborder
that is strictly better than the initial order σ, which is in contradiction with
the initial hypothesis which states that σ is an optimal order.

In the same manner, the proof is generalized to any sub-set of the branches
in place of only one branch k. Also, we can state that the optimal sub-order
σ′ satisfies this proposition recursively.

We now are going to give an algorithm for the latter problem. It is based

S. Carpov et al. / Electronic Notes in Discrete Mathematics 36 (2010) 119–126124

on finding a shortest path in a specific graph and uses the result of Proposition
3.5.

Definition 3.6. Let G = (V, E, c) be a directed graph, where V is a set of
nodes, E, a set of edges and c : E → R, a cost function that assigns a real,
non-negative number to each edge of the graph. The graph G contains n + 1
nodes numbered from 0 to n. The meaning of the node i is that the branches
1, . . . , i have been prefetched. For any i and j, the graph contains the edge
(i, j) if and only if i < j. The value associated by the cost function c to
the edge (i, j) is equal to the integral of function fσ over the period of time
when the branch order j, j−1, . . . , i+1 is prefetched, taking into account that
branches 1, . . . , i have been already prefetched.

An example of such a graph is presented in Fig. 4. It corresponds to the
graph built for a 4-output branching structure.

Fig. 4. An example of graph G for a 4-output branching structure.

Let P = 〈i1 = 0, i2, . . . , ip = n〉 be a path from node 0 to node n in the
graph G, defined above. The branch prefetching order that corresponds to the
path P is built in the following manner: we begin by an empty order σ = ∅, for
every k = 2, . . . , p, the partial order 〈ik, ik − 1, . . . , ik−1 + 1〉 is appended to
the end of σ, finally, σ will be the branch prefetching order that corresponds
to path P .

Proposition 3.7. Let P = 〈i1 = 0, i2, . . . , ip = n〉 be a path from node 0 to
node n in the graph G and σ be the branch prefetching order that corresponds
to P . Then, the cost of the path P is equal to the value of the integral of fσ (t)
over D, that is

∑p
k=2 c (ik−1, ik) =

∫
D

fσ (t) dt .

Proof. The proof of this proposition relies on the following transformations:

p∑
k=2

c (ik−1, ik) =

p∑
k=2

∫ lik

lik−1

fσ (t) dt =

∫ lip

li1

fσ (t) dt =

∫ ln

l0

fσ (t) dt

S. Carpov et al. / Electronic Notes in Discrete Mathematics 36 (2010) 119–126 125

As D = [l0, ln], the last equality proves the proposition.

The next proposition describes how from the graph G, defined above, the
optimal branch prefetching order is found.

Proposition 3.8. Let G = (V, E, c) be a graph built as described in Definition
3.6, and, let P = 〈i1 = 0, i2, . . . , ip = n〉 be the shortest path from node 0 to
node n. Then, the branch prefetching order σ that corresponds to path P is
an optimal one.

Proof. From the definition of the graph G and the propositions 3.4, 3.5, the
set of all possible paths, from node 0 to node n, covers the set of all possible
branch orders Π (n). Since the values of a path and its corresponding branch
prefetching order are the same, a shortest path P corresponds to a minimal
valued branch prefetching order σ.

4 Conclusion

This paper is a first examination of the problem of speculative data prefetching
in dataflow applications restricted to a single n-way branching structure.

In a subsequent paper, we will address the issue of finding optimum data
prefetch strategies in the more realistic settings where several branching struc-
tures are embedded in more complex dataflow graphs.

References

[1] G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg. Evaluating iterative
compilation. In Proceedings of the 15th Workshop on Languages and Compilers
for Parallel Computing (LCPC’02), pages 305–315, 2002.

[2] T. Goubier, F. Blanc, S. Louise, R. Sirdey, and V. David. Définition du Langage
de Programmation ΣC. Technical Report DTSI/SARC/08-466/TG, CEA LIST,
Saclay, 2008.

[3] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin,
Germany, 2004.

[4] E. A. Lee and T. M. Parks. Dataflow process networks. In Proceedings of the
IEEE, pages 773–799, 1995.

S. Carpov et al. / Electronic Notes in Discrete Mathematics 36 (2010) 119–126126

