2011 International Conference on Network-Based Information Systems

Probabilistic parameters of conditional task graphs

Sergiu Carpov*:T, Jacques Carlier!, Dritan Nace! and Renaud Sirdey*
* CEA, LIST,
Embedded Real Time Systems Laboratory,
Point Courrier 94, 91191 Gif-sur-Yvette Cedex, France.
¥ UMR CNRS 6599 Heudiasyc,
Université de Technologie de Compiegne,
Centre de recherches de Royallieu,
BP 20529, 60205 Compiegne Cedex, France.

Abstract—This paper deals with the problem of determina-
tion of probabilistic parameters for tasks in a series-parallel
conditional task graph. Such problematic is encountered in
the context of parallel computing when dealing with condi-
tional precedence constrained parallel tasks on a multi-core
machine. The conditional task graph was introduced in order
to express conditional precedence constraints and thus to model
conditional execution in an application, which is not possible
with a conventional task graph. We focus here in the calculation
of two probabilistic parameters: the heads (release dates) and
the tails (delivery times). An algorithm for computing these
parameters is proposed. Although it has a pseudo-polynomial
time complexity, the execution time of the algorithm can be
further reduced at the price of less precision in the results.

Keywords-Parallel computing; conditional task graph; prob-
abilistic release/delivery times; multiprocessor scheduling

I. INTRODUCTION AND MOTIVATION

A task graph model, also known as directed acyclic graph
(DAG), is used to represent algorithms which have to be
executed on a parallel computing system. The benefit of the
task graph modeling is that it allows to explicitly express the
parallelism present in an algorithm by means of dependen-
cies (precedence relations) between the tasks. A multitude
of methods have been proposed in the literature to deal with
the DAG scheduling on multiprocessor systems having as
objective the completion time minimization, refer to [1] for
a review. The above methods use different parameters which
are defined for the DAG’s tasks. Two important parameters
are the release date (head or top level) and the delivery
time (tail or bottom level) of a task. These parameters are
used in task selection rules of list scheduling algorithms.
For example, in the work [2] is described the selection
rule CP/MISF (critical path/most immediate successors first)
which prioritizes the tasks having the largest delivery time.

Another important parameter for a task graph is the
minimal execution time (or the critical path) which is the
completion time obtained when no constraint is imposed on
the number of available processors (i.e. when the number
of processors is considered to be unlimited). The minimal
execution time is a lower bound for the completion time of
the general multiprocessor scheduling problem and it is used

978-0-7695-4458-8/11 $26.00 © 2011 IEEE
DOI 10.1109/NBiS.2011.63

376

in tree search algorithms (e.g. branch and bound methods)
to reduce the search space.

The task graph model lacks of expressivity which limits
its use in many practical situations. A first drawback is the
hypothesis that task execution times are constant. In reality,
they are variable and depend on several factors (caching,
branch prediction mechanisms). A second disadvantage is
the absence of tools for modeling conditional branches
which are widely employed in programs. A conditional
branch is a special task, such that only one of its successors
is executed (in function of a condition depending on the
input data for example). The case of variable task durations
is known in the literature on probabilistic PERT scheduling
[3] and on stochastic DAG scheduling [4], [5], [6]. The
literature on task graphs with conditional branches is scarce
and mainly consists in methods for allocating and scheduling
them onto multiprocessor systems [7], [8]. The goal of this
study is to define probabilistic parameters for task graphs
with conditional branches.

A conditional task graph (CTG) is a directed acyclic graph
G = (V,A,d,p), where V is the set of tasks, E C V xV is
the set of dependence relations between the tasks, d : V —
N is a function that associates to each task v € V' a non-
negative duration d,! and p : E/ — R is a function that
associates to a subset of edges E’', E' C E, a probability
Pou> (v,u) € E'. For a task v either all its input (output)
edges have probabilities, or no probability is defined for any
input (output) edge, in the first case we call v a branch-
in (branch-out) node and in the later a join (split) node.
All the successors, or predecessors, of split, respectively
join nodes, are executed. In contrast, when a task v is a
branch-in (branch-out) node, only one of its predecessors
(successors) u is executed with a probability p,, (Pow)-
Relation Zueprcd(v) Puy = 1 is satisfied for any branch-
in node v and equivalently relation Zuesucc(v) Pyu = 1 for
any branch-out node v. We shall note that a task can be a
join/split and a branch in/out node at the same time. Figure

'Without loss of generality we suppose that the execution times are
integers.

IEEE
computer
® psouety

Figure 1: A conditional task graph. The values on the edges
represent the probabilities of branch-in, branch-out nodes
and the values next to vertices are the execution times.

1 illustrates a CTG build up from 11 vertices, with 2 branch-
out (vertices 1 and 4) and 2 branch-in (vertices 4 and 11)
nodes. The next node that will be executed after the branch-
out node 1 is either the node 2 with a probability of 20%
or the node 3 with a probability of 80%.

In this work we propose an algorithm for finding prob-
abilistic release dates and delivery times in series-parallel
CTGs. We shall note that the usual algorithm for finding
release dates and delivery times in DAG cannot be applied, at
least directly, because the statistical correlation between the
random variables is not considered. On the other hand, we
notice that restricting to the use of constant task execution
times limits the scope of the model. Hence, our goal is to
propose an an algorithm, which can take into consideration
task execution times described by probability distributions.
The probabilistic release dates and delivery times can be
used in a list scheduling algorithm in order to compute
priority rules that will better consider the CTG structure and
execution specificities.

The paper is organized as follows: after a brief description
of some basic operations on discrete random variables in
Section II, the proposed algorithm for calculating release
dates and delivery times is introduced in Section III, sub-
sequently in Section IV the results of the algorithm applied
on a sample graph are studied and Section V concludes the

paper.
II. DISCRETE RANDOM VARIABLE OPERATIONS

Let A be a discrete random variable (DRV) characterized
by a finite set of possible values D4, where each value
x € Dy (also called realization) has a positive probability
Pr(A =) > 0 defined. The probability mass function
(pmf) of the DRV A is a bijection f4 : D4 — [0, 1] such that
fa(x) =Pr(A=x) forany x € Dy and fa (x) = 0 for
any other value. We shall note that >, fa(z)=1. The
cumulative distribution function (cdf) of A is a bijection Fy :

371

R — [0,1] such that Fy (z) =Pr(A<x) =), fa(t)
for any z. In what follows we consider that the domain of
definition D 4 contains only natural numbers (integers)?, i.e.
D4 C N, and we note by ny the size of the domain of
definition, ny = |D4|. In the sequel we introduce some
basic operations on DRVs that are used in the computations
of heads and tails in CTG.

A. Maximum of independent DRVs

Let A and B be two independent DRV's with domains D 4
and Dp, cumulative distribution functions respectively Fy
and Fg. Let C be another DRV that denotes the maximum
of A and B, i.e. C = max (A, B). The domain of definition
of variable C' is Do C (Da U Dpg) \ {min (D4 U Dp)},
respectively its size is |D¢| < na +np — 1. Using simple
mathematical manipulations we can compute the maximum
of two independent DRV for a value z:

Pr (max (A, B) < x)
Pr(A<zAB<zx)=Fs(x) Fp(x)

Thus, the cdf of variable C is given by F¢ (z) = Fa (x)-
Fg (x) for any x. The algorithmic complexity of computing
the maximum of two DRVs is O (n4 + np).

Because of the associativity of the maximum operator, the
maximum of m independent DRVs, X; for ¢ € 1...m, can
be computed by applying the maximum operation m — 1
times between two DRVs. The complexity of this operation
is O (>_, n;) where n; is the size of the domain of definition
of X;. The size of the domain of the obtained DRV is at
most y_.n; —m + 1.

B. Sum of independent DRVs

Let A and B be two independent DRV's with domains D 4
and Dp, probability mass functions f4 and respectively fp.
Let C be the sum of these DRVs, C' = A + B. The pmf
of the sum of two DRVs is computed by convolving the
pmf of these DRVs, which is a well known result from the
probability theory. Thus the pmf of C is fo (z) = fa *
[(x) =3, fa(t—x) fs (x), where x is the convolution
operator, for any x € D¢. The domain of definition of
DRV C is Do = {za —+ xp | Ty € Dy, xp € DB} and its
size satisfies |Dc| < ma - mp. Only the possible values
belonging to the domains of definition are not zero, hence
many useless calculations of the convolution sum can be
avoided. In such a way the convolution sum computation
has a complexity O (nanpg).

The sum of three and more independent DRVs is cal-
culated equivalently, the convolution operator being asso-
ciative. Suppose we have m independent DRVs, X; for

2No precision is lost due to rounding errors as CTGs have integer
execution times.

1 € 1...m, then the sum of these DRVs has a domain size
of a most [[;", n; where n; is the domain size of X;.

The sum between a DRV A and a constant b is equivalent
to shifting the pmf of A by b units to the right. Suppose
C = A+ b then the pmf of C, is fo (x +b) = fa (z) for
any x € Dy.

C. Combining realizations of a DRV

We call a composite realization of a DRV a set of
its possible values, that is a collection of values from
the domain of definition of the DRV. Suppose that the
probabilities of a composite realization A of a DRV C
are given by a function fa : D4 — [0,1] where D4 is
the set of values of the realization A and f4 (z) is the
probability of x € Dy, fa(z) = Pr(C=xz|C=A).
Relation > . fa(z) =1 is verified.

Let C' be a DRV which has two mutually exclusive
composite realizations A and B, described by the parameters
D4, faand Dp, fp. Let pa, pa = Pr(C = A), denote the
probability that DRV C' takes all the values of the realization
A and pg, pp = Pr(C = B), of the realization B. Relation
pa + pp = 1 is valid because A and B are mutually
exclusive. Knowing the parameters of A and B we want
to compute the domain of definition D and the pmf f¢o
of C'. The domain of definition is the union of the sets of
values of the realizations A and B, Do = D4 U Dg. For
any x € Do we have:

Pr(C=xz)=Pr(C=xzAC=A)+
Pr(C=2AC=B)=
Pr(C=z|C=A)Pr(C=A)+

Pr(C =z|C = B)Pr(C = B)

Rewriting the last expression we obtain fc ()
pafa(x)+ppfp (z) forany x € De. This computation has
a complexity O (n4 + np) where n4, np are the number of
values in each realization. In what follows we shall denote
this operation C' = p4 A W pg B and by abuse of language
we shall call it weighted sum.

III. COMPUTATION OF PROBABILISTIC HEADS AND TAILS

In this section we introduce the notion of release times
(heads) and delivery times (tails) for CTGs, and in sequel we
introduce an algorithm to calculate the heads and tails for
series-parallel CTGs. In what follows we make the hypothe-
sis that the number of available processors is unlimited, thus
we should not worry about the placement of tasks.

Following the usual definition, the release time r, for a
task v, v € V, is defined as the minimal time the task v must
wait before it can start, and respectively, the delivery time
Qv is defined as the minimal time the task v must remain
in the system after it has finished its execution. In case of
usual task graphs the heads can be calculated by examining
the graph nodes in topological order, the head of a task

378

v is 7y = MaXyepred(v) (Tu + dy) Where pred (v) are the
predecessors of v and d, is the duration of task u. The
tails are calculated either by examining the tasks in inverse
topological order using a similar relation for the tails of tasks
or by applying the method described above on the inversed
graph?.

For a CTG single valued heads and tails cannot be defined
because the execution paths of a CTG are different in
function of the chosen paths in branch nodes. The following
definition introduces the probabilistic heads and tails for
CTGs.

Definition 1 (Probabilistic heads and tails). Given a CTG,
a probabilistic head of a task is a DRV which denotes the
minimal time that has to elapse before this task can start
its execution. Equivalently, a probabilistic tail of a task is a
DRV which denotes the minimal time this task has to remain
in the system after is has finished its execution.

By considering the heads and the tails as DRVs we, firstly,
introduce the possibility to express the uncertainty of the
CTG’s branch nodes, and secondly, generalize the usual
definition of heads and tails for task graphs. Obviously the
heads and tails for a task graph can be represented as single
valued (probability equals to one) heads and tails.

It is not straightforward to compute the probabilistic heads
and tails for CTGs. Let G = (V, E, d, p) be a series-parallel
CTG (the graph in Figure 1 is series-parallel). A graph is
series-parallel if it can be recursively constructed either by
parallel composition or by serial composition of two series-
parallel graphs, for more information on recognizing series-
parallel graphs refer to [9]. Without loss of generality we
suppose that G contains a single source vertex and a single
sink vertex, denoted respectively s and ¢. In this case G is
called 2-terminal series-parallel graph. The head of a task
v, v € V, is a DRV denoted R,, and respectively, the tail
is a DRV denoted @, Initially we focus on the calculation
of heads and afterwards we briefly describe the computation
of tails based on the symmetry between the heads and the
tails.

To calculate the heads of tasks, graph vertices are exam-
ined in topological order and for each vertex v, v € V,
relation R, = maX,epred(v) (R + dy) is used to find the
head of v. For any predecessor u of vertex v, u € pred (v),
the computation of the inner sum R, + d, does not pose
any problem, it corresponds to a simple shift of the pmf
of R, by d, units to the right. In contrast to the previous
sum operation, computing the “max” of several DRVs is
not straightforward because we do not know if the DRVs
are correlated or not. Four different computation rules can
be distinguished:

1) Vertex v has only one predecessor. In this case the

3 An inversed graph is a graph in which the directions of the edges have
been inversed

calculation of the head is straightforward as no “max”
operation is employed, R, = R, + d, where u
pred (v).

Vertex v is a join task and its predecessors’ heads
are independent DRVs. The head of vertex v is
computed using the maximum of independent DRVs
method described in the previous section, R,
maXyepred(v) (Ru + du)

Vertex v is a branch-in task. A probability p,, is
defined for any input edge (u,v) € E of vertex v.
The heads of the predecessors of v are composite
realizations of a single DRV which is the head of
task v. Each realization R, has a probability to
be executed p,,. Using the weighted sum operation
described in the previous section the head of task v is
R, = &JuEpred(v) Puv - (RU + d“)'

Vertex v is a join task and its predecessors’ heads
are dependent DRVs. The dependence between these
heads is created in an ancestor split vertex v’, refer to
Proposition 2 for a proof and an illustration. In this
case, a head Rfjel of vertex v “relative” to vertex v’
is computed and afterwards the “real” head is equal
to the sum R, = R, + R’ between the DRVs R"¢!
and R, (which corresponds to the convolution of the
DRVs’ pmfs).

2)

3)

4)

Proposition 2. Letr G = (V,A,d,p) be a two-terminal
series-parallel CTG and let v be a join vertex for which
its predecessors’ heads are dependent DRVs. Then it exists
a split vertex v', v/ € anc(v), where this dependence
is created and v' is the nearest common ancestor of v’s
predecessors.

Proof: The only place in CTGs where a dependence
is created are the split vertices. Inevitably, in a descendant
join vertex the maximum of dependent DRVs has to be
computed.

Let v € V be a join vertex. Without loss of generality we
suppose that v has two predecessors v and w. Let us denote
by L the common ancestors of u and w, L = anc (u) N
anc (w). For any CTG the set L is not empty and it contains
at least the source vertex s, because s is a common ancestor
to all graph vertices. Let v/ € L be the nearest common
ancestor of u and w, thus |L\ anc (v')| 1. Consider
the sub-graph G’ of G composed of vertices anc (v) \ L.
Because G is series-parallel the graph G’ has two connected
components, the sub-graphs SG; and SG, refer to Figure
2 for an illustration. In graph G' no edge exists between
the components SG; and SG>, no in (out) edges exists for
SG1, SG4 except (v, p) for any p € suce (v') ((p, v) for any
p € pred (v)). We conclude that if the heads R, and R,, are
dependent DRVs then the only place where this dependence
can be created is vertex v’. [|

Algorithm 1 finds the heads of vertices in a CTG graph
using the four computation rules described earlier. In the

379

SGy

SG,

rel _..--==""

Ry

Figure 2: Illustration of the nearest common ancestor of a
vertex (used in the proof of Proposition 2).

algorithm, an array R}'“™, v € V, is used to track the ver-

tices where a dependence was created. Particularly, if R**™
is different from zero then at vertex v a dependence was
created and the rule 4 must be used for heads calculation.
The graph vertices are examined in topological order. The
head of each vertex is computed in function of its type, e.g.
for branch-in nodes the weighted sum of predecessors’ heads
is used and for join nodes the maximum of predecessors’
heads (lines 4 and 6). If at the nearest common ancestor,
v, of the current vertex v predecessors a dependency was
created (i.e. RJ*™ # 0) then all the heads from v’ to v are
“relative” and must be updated (lines 9-11). If the current
vertex is a split and the domain of its head DRV has more
than one possible value then a new “relative” calculation is
started from the current vertex (lines 14-17).

In order to compute the tails of vertices in a CTG the
same algorithm applied to the inversed CTG is used. We
shall note that the branch-out and branch-in vertices change
place in the inversed CTG, that is branch-out nodes of a
CTG correspond to branch-in nodes in the inversed CTG.

The computation of heads and tails implies the use of
operations described in the previous section. The num-
ber of possible values of the resulting DRV potentially
increases each time an operation is applied. In the case
of the maximum operation this number increases linearly,
whereas the sum operation increases it exponentially. For
example, suppose we have two DRVs such that the first
one has 3 possible values and the second one 5 possible
values. Then, the maximum between the DRVs creates a
DRV with at most 7 (3+5-1) possible values and the sum
operation a DRV with 15 values (in the worst case). The
complexity of Algorithm 1 is pseudo-polynomial because
of the computations implying DRVs which tend to augment
the domains of definition. We notice that the domain of
values of DRV is included in [0, CP], where C'P gives the
maximum completion time. In practical situations, a remedy
will be to approximate the DRVs distributions. In this way,
the computational complexity can be reduced at the price of
less precise results.

IV. EXAMPLE OF ALGORITHM EXECUTION

The algorithm for finding probabilistic heads and tails,
described in the previous section, is applied on the CTG
illustrated in Figure 1. Initially, R}**"* and R, are zero for

Algorithm 1 Algorithm for computing the probabilistic
heads/tails of tasks in a CTG.
Input: A CTG G = (V,E,d,p)
Output: Heads R, for any vertex v € V as DRVs
I Ry =R =0foranyveV
2: for v € V' in topological order do

3: if v is a branch-in then {rule 3}
4: R, = Lﬂuepred(v) Pu,v (Ru + du)
5. else {v is a join, rules 1,2,4}
6: R, = MaXyepred(v) (Ry + du)
7: if |pred (v)| > 1 then
8: Find the nearest common ancestor, v/, of v’s
predecessors
9: if R} # 0 then {rule 4}
10: R, = R, + R}*™ for any
u € (anc (v) U{v}) \ anc (v)
11: end if
12: end if
13: end if
14: if v is a split and |succ (v)| > 1 and |Dg, | > 1 then
15: Re™ = R,
16: R,=0
17: end if
18: end for

any vertex. Suppose that the used topological order coincides
with the vertex indexing (several topological orders are
defined for this graph). At the first iteration, v = 1, no
instruction from the loop body is executed. In the next
two iterations the heads of vertices 2 and 3 are computed,
Ry = R3 = 0. No other action is performed. At the 4-
th iteration the head of the current vertex 4 is computed
using the weighted sum operation (vertex 4 is a branch-
in), Ry = {(2,0.8),(3,0.2)}. The conditional instruction
(line 14) is not executed (vertex 4 is a branch-out, not
a split). In the next iteration, vertex 5 is examined. The
head of vertex 5 is computed, R5; = {(4,0.8),(5,0.2)}.
As vertex 5 is a split with two successors and its head
contains more than one possible value the second condition
(line 14) is executed. The current head value Rj is copied
to RZ*™ and in the sequel R is nullified (a new “relative”
calculation starts). Afterwards, in the next three iterations the
heads of vertices 6, 7, 8 are calculated and no other action is
performed: Rg = {(4,0.8),(5,0.2)} and R; = Rs = 4
(we shall note that these heads are “relative” to vertex
5). In the following iteration, the head of vertex 8, which
is a join, is computed Rg = 9. In sequel, the nearest
common ancestor, v’ = 5, is found and because RI**™ is
not zero to the heads of vertices 5,7,8,9 is added Rg**™:
Rs = {(4,0.8),(5,0.2)}, Ry = Rg = {(8,0.8),(9,0.2)}
and Ry = {(13,0.8),(14,0.2)}. In the next iteration Ry =
{(11,0.8),(12,0.2)} is found and in the last iteration the
head of 11 is computed using the weighted sum operation

380

[Task, v | R,
1 0
2 0
3 0
4 (2,0.80) (3,0.20)
5 (4,0.80) (5,0.20)
6 (4,0.80) (5,0.20)
7 (8,0.80) (9,0.20)
8 (8,0.80) (9,0.20)
9 (13,0.80) (14,0.20)
10 (11,0.80) (12,0.20)
11 (13,0.32) (14,0.08) (17,0.48) (18,0.12)

(a) Heads

[Task, v | Qv |
1 (13,0.32) (14,0.08) (17,0.48) (18,0.12)
2 (11,0.40) (15,0.60)
3 (11,0.40) (15,0.60)
4 (9,0.40) (13,0.60)
5 9
6 2
7 4
8 4
9 0
10 0
11 0

(b) Tails

Table I: The computed heads and tails for each task from the
CTG in Figure 1. The distributions are presented as pairs of
possible values and theirs probabilities. When a distribution
has only one value the probability is not reported.

R11 ={(13,0.32),(14,0.08), (17,0.48), (18,0.12)}.
Table I presents the heads and the tails obtained by the
algorithm for each task of CTG. The heads of tasks 1,...,3
are distributions containing only one possible value (i.e. the
heads are constant values). The same can be said for the
tails of tasks 5,...,11. In contrast to this, the head of node
4 has two possible values: 3 with probability 20% and 2
with probability 80%. The head of the sink vertex, task 11,
has 4 possible values and corresponds to the probabilistic
completion time of the CTG. The most probable execution
time of the CTG is then 17 (having the highest probability
- 48%), the mean execution time is 15.6, the minimal and
the maximal execution times are respectively 13 and 18.

V. CONCLUSIONS

In this paper we have examined the determination of
probabilistic parameters of conditional task graphs. A CTG
is a generalization of the task graphs (DAGs) in which
conditional branches are modeled. A conditional branch is
a special task that executes one of its successors in function
of a condition.

We have proposed an algorithm for finding probabilistic
heads and tails for each vertex of a series-parallel CTG.
The algorithm has a pseudo-polynomial complexity. The
execution time of the algorithm depends on the sizes of the

domains of definition of the DRVs used to represent the
heads and the tails. At the price of less precise results the
execution time of the algorithm can be reduced in order to
be able to use it for graphs encountered in practice.

In a subsequent work we plan to use the probabilistic
heads and tails for defining priority rules for list scheduling
heuristics. Then, we envisage to use such a heuristic for
scheduling CTGs on multiprocessor systems and to evaluate
the benefits brought by this method.

REFERENCES

[1] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms
for allocating directed task graphs to multiprocessors,” ACM
Comput. Surv., vol. 31, pp. 406-471, December 1999.

[2] H. Kasahara and S. Narita, “Practical multiprocessor schedul-
ing algorithms for efficient parallel processing,” IEEE Trans-
actions on Computers, vol. 33, no. 11, pp. 1023-1029, 1984.

[3] A. Nadas, “Probabilistic PERT,” IBM J. Res. Dev., vol. 23, pp.
339-347, 1979.

[4] Y. A. Li and J. K. Antonio, “Estimating the execution time
distribution for a task graph in a heterogeneous computing
system,” in Proceedings of the 6th Heterogeneous Computing
Workshop (HCW ’97), 1997, pp. 172-184.

[5] F. Wang, C. Nicopoulos, X. Wu, Y. Xie, and N. Vijaykrishnan,
“Variation-aware task allocation and scheduling for mpsoc,” in
Proceedings of the 2007 IEEE/ACM International Conference
on Computer-Aided Design, 2007, pp. 598-603.

[6] A.Kamthe and S.-Y. Lee, “A stochastic approach to estimating
earliest start times of nodes for scheduling dags on heteroge-
neous distributed computing systems,” in Proceedings of the
19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05) - Workshop 1 - Volume 02, 2005, p.
121b.

[7] Y. Xie and W. Wolf, “Allocation and scheduling of conditional
task graph in hardware/software co-synthesis,” in Proceedings
of the conference on Design, automation and test in Europe,
ser. DATE °01, 2001, pp. 620-625.

[8] M. Lombardi and M. Milano, “Allocation and scheduling of
conditional task graphs,” Artif. Intell., vol. 174, pp. 500-529,
2010.

[9] J. Valdes, R. E. Tarjan, and E. L. Lawler, “The recognition
of series parallel digraphs,” in Proceedings of the eleventh
annual ACM symposium on Theory of computing, ser. STOC
79, 1979, pp. 1-12.

381

