
A Heuristic Algorithm for Stochastic Partitioning of Process Networks

Oana Stan, Renaud Sirdey, Jacques Carlier and Dritan Nace

Abstract— In this paper, we study the problem of partitioning
networks of processes under chance constraints. This problem
arises in the field of compilation for multi-core processors. The
theoretical equivalent for the case we consider is the Node
Capacitated Graph Partitioning with uncertainty affecting the
weights of the vertices. For solving this problem we propose
an approximate algorithm which takes benefit of the available
experimental data through a sample-based approach combined
with a randomized greedy heuristic, originally developed for the
deterministic version. Our computational experiments illustrate
the algorithm ability to efficiently obtain robust solutions.

I. INTRODUCTION

Compilation for embedded systems is an important field of
application for operations research techniques, characterized
by the need to respect capacity constraints on a set of interde-
pendent resources such as CPU, memory, bandwidth, etc. In
the past, optimization methods were mainly applied to com-
piler backend problems. Nowadays, with the development
of complex multi-core architectures, the field of applications
for operations research techniques has widened almost to
the entire structure of a compiler. The related optimization
problems (buffer sizing, task scheduling, placement, routing,
etc.) require taking into account a large number of data,
which are inherently uncertain and difficult to model with
precision.

More precisely, the development of 100+ cores micro-
processor architectures [1] has triggered a renewed interest
for the so-called dataflow programming models (e.g. [2])
in which one expresses computation-intensive applications
as networks of concurrent tasks interacting through (and
only through) unidirectional FIFO channels. These models
are of the uttermost practical relevance because they relieve
the programmer from one of the main pitfalls of parallel
programming (having to express explicit complex synchro-
nization schemes). Also, they allow the natural expression of
more than enough parallelism for chips in the few hundreds
of cores range, at least in the (rather wide) domain of signal
and image processing.

A dataflow application can therefore be modeled as a
directed graph in which the vertices are the tasks and the
arcs are the channels and one of the (numerous) tasks of a
dataflow compilation chain consists of mapping this graph
onto the hardware resources of the target microprocessor
architecture. Thus, in this paper, we study the problem of

CEA, LIST, Embedded Real Time System Laboratory, Point Cour-
rier 172, Gif-sur-Yvette, 91191 France. oana.stan@cea.fr,
renaud.sirdey@cea.fr

UMR CNRS 6599 Heudiasyc, Université de Technolo-
gie de Compiègne, BP 20529, 60205 Compiègne, France.
jacques.carlier@hds.utc.fr, d.nace@hds.utc.fr

assigning the weighted vertices of such a graph to a fixed set
of partitions, in order to minimize the sum of costs for edges
having their extremities in different partitions (representing
the processors), without exceeding the limited capacity (e.g.
the memory footprint) of each partition. This application is
an extension of the more abstract NP-hard problem of Node
Capacitated Graph Partitioning (NCGP) [3], [4].

Known, in the deterministic case of single dimensional
weights, as the NCGP, this problem has, to the best of
our knowledge, received little attention from the stochastic
programming community. We present a novel approach for
graph partitioning with capacity constraints which is taking
into account the uncertainty affecting the node weights.
In order to respect as close as possible the real context
of our application, a qualitative analysis of the source of
uncertainty was performed, leading us to the choice of a
non-parametric method. A greedy randomized affinity-based
heuristic, described in [5], which proved to be very efficient
for the placement of the processes in the deterministic case,
was adapted for solving the chance-constrained version of
the problem with a preset level of confidence. Therefore, as
shown in the sequel, the heuristic algorithm we propose in
this paper is providing more robust solutions to the above-
mentioned problem.

It should however be emphasized that the non-parametric
method we introduce here for solving our chance-constrained
problem is general and can be applied, in combination
with other approximation algorithms (e.g., metaheuristics),
to other optimization problems.

This paper is organized as follows: after a formal definition
of our problem in Section 2 and a justification of our work
in Section 3, we briefly recall, in Section 4, the notion of
relative affinity and the randomized greedy algorithm our ap-
proach is using. In Section 5, we discuss the motivations and
the basic idea of our method and we introduce the stochastic
resolution strategy. Computational experiments are provided
and analyzed in Section 6. Finally, concluding remarks and
future research directions are presented in Section 7.

II. PROBLEM STATEMENT

The process network partitioning problem can be formally
stated as follows.

Let G = (V,A) be a directed graph where the set of
vertices V represents the tasks and the arcs (v, w) ∈ A
correspond to the channels of a process network.

Let N be the set of nodes of the parallel architecture on
which we want to map our graph.

The resources (essentially memory footprint and com-
puting core occupancy) are given by the set R and the

capacities of the nodes are given by a multi-dimensional
array C ∈ R+|R|. For the sake of simplicity, this study
will be limited to the case of homogeneous nodes, hence
we suppose all nodes have the same capacity.

Let us also define two functions. s : V −→ R+|R|, is
defined as a size function for the vertices, with s(v)r being
the weight of vertex v for resource r. The second function,
defined for the edges, is the affinity function q : A −→ R
where q((v, w)) > 0 denotes the weight of edge (v, w) ∈ A
and q((v, w)) = 0 if no edge (v, w) exists between vertices
v and w. In the remaining of this paper, we will use the
following simplified notation for these functions: Qvw =
q((v, w)) for each arc (v, w) ∈ A and Svr = s(v)r, for
r ∈ R and v ∈ V .

The partitioning problem we consider thus consists in
finding an assignment of the vertices to the nodes, denoted
f : V −→ N , which satisfies the capacity constraints for all
resources: ∑

v∈V :f(v)=n

Svr ≤ Cr,∀n ∈ N, ∀r ∈ R, (1)

and which minimizes the objective function:∑
(v,w)∈A:f(v)6=f(w)

Qvw

III. CONTRIBUTION OF THIS PAPER

In this paper, we present a heuristic algorithm dedicated
to the resource-constrained graph partitioning problem which
crops up when mapping networks of dataflow processes
on a parallel architecture assuming the resource consump-
tions of the processes are uncertain. Our algorithm design
methodology consists in leveraging an existing heuristic for
the deterministic case without significant destructuring (i.e.
at small cost in terms of software engineering) and with
acceptable performance hit. Furthermore, this method is
applicable to pretty much any existing algorithm. Hence, the
contribution of this paper is more centered on demonstrating
the practical relevance of our redesign-for-the-stochastic-case
methodology than on demonstrating the intrinsic quality of
the algorithms involved.

Also, our extension method is non parametric and is there-
fore suited to application cases where complex multimodal
probability distributions occur, a fact which we motivate
regarding our own application context.

IV. PRELIMINARIES

A. Relative affinity

Before describing the randomized greedy heuristic our
stochastic algorithm is based on, let us recall the notion of
relative affinity, initially introduced in [5].

Let S and T be two disjoint subsets of V .
Definition 1: The affinity of S for T is given by:

α(S, T) =
∑

(v,w)∈δ(S,T)

Qvw.

with δ(S, T) = {(v, w) : v ∈ S;w ∈ T}.
It follows that α(S, T) = α(T, S).

Definition 2: The total affinity of S (similarly for T) is
given by

β(S) = α(S, V \ S).
Definition 3: The relative affinity of S for T is defined as

γ(S, T) =
1

2
α(S, T)

(
1

β(S)
+

1

β(T)

)
where α(S,T)

β(S) represents the contribution to the total affinity
of S of the edges adjacent to S and T .

B. Randomized greedy algorithm for deterministic case

Initially described in [5], the randomized greedy algorithm
for processes partitioning in the deterministic case, is based
on the relative affinities of admissible assignments and
admissible fusions.

Let W be the set of vertices not yet assigned to a node.
Definition 4: An assignment of vertex v to node n is

admissible if it satisfies the capacity constraints for node
n, such that for every resource r ∈ R:

Svr +
∑

w∈V \W :f(w)=n

Swr ≤ Cr

Definition 5: A fusion between the nodes n and m is
admissible if for every resource r ∈ R:∑

v∈V \W :f(v)=n

Svr +
∑

v∈V \W :f(v)=m

Svr ≤ Cr

On empirical ground, the assignments are preferred to
fusions and, when tie-breaking with respect to relative affin-
ity, the heuristic prioritizes the assignment of vertices with
heavier weights on less loaded nodes and the fusion of the
most loaded nodes. We also formally define the relations of
heavier vertex and more loaded node which are being used
in the algorithm for the multidimensional case.

Definition 6: The vertex v is smaller or lighter than the
vertex w if:

max
r∈R

Svr
Cr

< max
r∈R

Swr
Cr

(2)

Definition 7: The node n is more loaded than the node m
if for every vertex v ∈ V \W :

max
r∈R

(
1−

∑
f(v)=n Svr

Cr

)
< max

r∈R

(
1−

∑
f(v)=m Svr

Cr

)
The algorithm in [5] takes as input the set W , initially

equal to V , and the set of nodes N . A basic version of the
algorithm consists in:

1) Initialization W = V .
2) Assign the first min(|V |, |N |) vertices in lexicographic

order to the |N | nodes.
3) Find an admissible assignment (v∗, n∗) (v∗ ∈W , n∗ ∈

N), if any, with maximal relative affinity,

γ1 = γ({v∗}, {v ∈ V \W : f(v) = n∗}).

4) Find an admissible fusion (n∗1, n
∗
2) (n∗1 ∈ N , n∗2 ∈ N),

if any, with maximal relative affinity, for v ∈ V \W ,

γ2 = γ({v : f(v) = n∗1}, {v : f(v) = n∗2}).

5) If γ1 ≥ γ2 then assign v∗ to n∗, else merge n∗1 and
n∗2.

6) If W is empty or there is neither any admissible
assignment nor any admissible fusion, stop. Else, go
to Step 3.

In order to escape poor quality solutions, a randomized
version of the algorithm is executed several times. The
randomization strategy consists in executing the algorithm
first on the list of vertices sorted by their decreasing weights
(see step 2 of the algorithm and for multi-resource case,
Eq. 2) and several times afterwards using randomly ordered
versions of the list of vertices.

This algorithm being given, we can now turn to the
stochastic case.

V. CHANCE-CONSTRAINED RANDOMIZED
GREEDY APPROACH

With the intention of duly matching the real context of
the application, we have performed a qualitative analysis
of the sources of uncertainty, mainly the execution times.
As described in the next section, the analysis shows the
inherent difficulty of obtaining an analytical description of
the distributions of the execution times. It also motivates our
choice for a model in which the weights of the vertices,
dependent on the execution times, are random variables
and justifies our recourse to a non parametric sample-based
approach.

A. Uncertainty of execution time

One of the main sources of uncertainty in our context
lies in the intrinsic indeterminism of the execution times of
computing kernels of intermediate granularity (i.e. comput-
ing kernels typically requiring a few tens of microseconds).
Even if it is reasonable to assume that the probability
distributions of execution times have a bounded support (no
infinite loops), we have to cope with the fact that these
distributions are intrinsically multimodal (due to the presence
of data dependent control). Hence, it is difficult to model
these probability laws using the usual distributions such as
the normal or uniform ones, which are unimodal. Also, in
the case of processes networks, we cannot overlook the
problem of dependencies between these random variables.
Thus, it is appropriate to assume that the execution times
are random vectors characterized by complicated multimodal
joint distributions.

B. Basic ideas and motivations

Thus, let us now consider the following chance-
constrained program:

min
x

g (x)

s.t. P (G(x, ξ) ≤ 0) ≥ 1− ε (3)

In the above program, x ∈ Rn is the vector of decision
variables, ξ represents a random vector from the probability
space (Ω,Σ,P), f : Rn −→ R is the objective function and
G(x, ξ) ∈ Rm is the constraint function.

P(e) denotes the probability of the event e ∈ Σ and 0 ≤
ε ≤ 1 is a scalar defining the prescribed probability level.

As one may expect, this class of problem is inherently
difficult to address, mainly because of its combinatorial
nature. To the best of our knowledge, most of the proba-
bilistic models proposed in the literature (see for instance
[6], [7]) assume independence of the components of the
random vector or make assumptions about the support of
the distribution [8].

On the contrary, the approach we propose is justified by
the theory of statistical hypothesis testing and takes into ac-
count the important role of experimental data. Additionally,
for solving the initial problem (3) no assumptions are being
made about the joint distribution of the random variables
represented by the vector ξ, in particular with respect to the
independence of its components.

C. Statistical hypothesis testing

Let us clarify what it is meant in this paper by the notion
of sample and afterwards we will introduce the statistical
results on which our method is based. Here, by sample we
understand a finite number of realizations or instances of the
uncertainty vector ξ.

Given x the decision vector, the random variable χ corre-
sponding to the number of times the inequality G(x, ξ) ≤ 0
is satisfied on a sample of size NS follows by definition a
binomial distribution with parameters NS and p0. As such,
we can search a threshold k(NS, 1 − ε, α) such as, for
p0 = P{G(x, ξ) ≤ 0}:

P(χ ≥ k|p0 ≥ 1− ε;NS) ≤ α

where α ∈]0, 1[is a small probability of error (for example
0.05 or 0.01). The threshold k should be set sufficiently high
so that if we observe a number of constraint violations which
is superior to k, the probability that this number is generated
by a binomial distribution B(NS, 1− ε) is sufficiently low.
Hence, we can conclude, with a confidence level of at least
1− α, that p0 ≥ 1− ε.

We can also establish in advance the minimal sample size
necessary for a prescribed level of the probability ε ∈]0, 1[
and a required confidence level α ∈]0, 1[. In particular, if:

P(χ = NS − 1|p0 ≥ 1− ε;NS) ≥ α

then we can affirm that the sampling size is insufficient
(which is true for NS = 10 and NS = 20). The above
formula provides an easy way to determine the minimal
number of realizations that need to be drawn in order to
achieve the desired confidence level, established based only
on the parameters ε and α.

D. Randomized greedy algorithm: stochastic case

The statistical hypothesis test explained previously can be
easily integrated in a heuristic approach by counting the
number of constraint violations. For the stochastic version
of our graph partitioning problem, formally stated in Section
II, we make the assumptions that the task weights, Svr, are
random variables and that we dispose of a relevant sample

of NS independent and identically distributed realizations of
the uncertain vector of task weights. For k = 1 to NS, let
S̃
(k)
vr be the realization of the k-th observation.
Also denote the event enr = {

∑
v∈V :f(v)=n Svr ≤ Cr}.

The capacity constraint, expressed for the deterministic
case in equation (1), becomes: P

(∧
n∈N

∧
r∈R enr

)
≥ 1−ε.

In order to ensure that the probabilistic constraint is
satisfied with the given confidence level, one can simply, at
every step of the algorithm, redefine the notions of admissible
assignment and admissible fusion.

Definition 8: An assignment of vertex v to node n is
stochastically admissible if :

NS∑
k=1

χ(A ∨B) ≤ NS − k(NS, 1− ε, α)

with

A = {∃n′ 6= n, ∃r :
∑

w:f(w)=n′

S̃(k)
wr > Cr}

and
B = {∃r : S̃(k)

vr +
∑

w:f(w)=n

S̃(k)
wr > Cr}

and where χ(A ∨ B) = 1 if and only if the predicate
{A ∨B} is true.

This definition could be further simplified by the use
of a boolean matrix of size |N | × NS indicating for the
partial current partitioning if, for every node, the sample k
has already induced a violation. With the use of this array,
the computation of an admissible assignment increases in
complexity linearly, with a factor of NS, compared to the
deterministic case.

Definition 9: A fusion between nodes n and m is stochas-
tically admissible if:

NS∑
k=1

χ(A ∨B) ≤ NS − k(NS, 1− ε, α)

with
A = {∃n′, r :

∑
w:f(w)=n′

S̃(k)
wr > Cr}

and

B = {∃r :
∑

w:f(w)=n

S̃(k)
wr +

∑
v:f(v)=m

S̃(k)
vr > Cr}

and where χ(A ∨B) = 1 if and only if the predicate Pf =
{A ∨B} is true.

Analogously, we can simplify Pf by using the same
boolean matrix |N | ×NS.

As for the computation complexity, we remark again a
linear increase with a factor of NS in comparison to the
deterministic version.

Since we have to deal with a sample of size NS, we
can redefine the way we compare the vertices and the
nodes weights, by taking into account the average over all
realizations.

Definition 10: The vertex v is smaller or lighter in average
than the vertex w if:

max
r∈R

∑NS
k=1 S̃

(k)
vr

NS ∗ Cr
< max

r∈R

∑NS
k=1 S̃

(k)
wr

NS ∗ Cr
Definition 11: The node n is more loaded in average than

the node m if, for every vertex v ∈ V \W :

max
r∈R

(1−
∑
f(v)=n S̃

(k)
vr

NS ∗ Cr
) < max

r∈R
(1−

∑
f(v)=m S̃

(k)
vr

NS ∗ Cr
)

The above definitions are then easily integrated in the
algorithm, described in Section IV-B, without any major
modifications. By using the statistical hypothesis testing
within a heuristic approach, we also overcome the com-
putational effort of taking into account the uncertainties of
the weights of the vertices. Additionally, we could further
improve the performances of the heuristic by parallelizing the
computations of admissible assignments and of admissible
fusions.

VI. COMPUTATIONAL RESULTS

In this section, we report on the computation experiments
of the extension of the randomized greedy algorithm for
the stochastic case of uncertainty affecting the weights of
the vertices. All these experiments have been carried out
on a Linux PC workstation, with a 3.80 GHz Pentium(R)
processor, 3 GB of memory and Ubuntu 10.04 as operating
system.

Benchmark and Uncertain Parameters Generation

Since, to the best of our knowledge, there are no stochastic
instances defined for the graph partitioning problem, we
tested our algorithm on two modified sets of test problems,
originally intended for the deterministic case. The first set
of instances consists of some examples of grids, which
are representative in size of our application. Besides, these
instances are easy to modify and we can use them to test
different configurations of the parameters for our method.
The second set is composed by instances publicly available
(between 124 and 1000 vertices), defined in Johnson et al.
[9], initially used for bisection. The tests on this second set
were performed in order to confirm the effectiveness of our
stochastic algorithm (both in terms of solution quality and
running time) on a set of representative instances.

It should also be noted that the Grid 23×23, with 529
vertices and 16 nodes, is the closest in size to the real
instances in our application context and that for both sets,
we consider the case of mono-dimensional resources.

The random variables representing the weights of the ver-
tices are generated by simulating a joint bimodal distribution.
The two modes are uniform in their intervals and selected in
an equally likely manner.

The first mode is represented by the hypercube
[0.8, 0.9]|V |, and the second one, by the hypercube
[1.1, 1.2]|V |.

Results for the deterministic version

Table I shows the experimental results obtained by apply-
ing the randomized greedy heuristic for minimizing the inter-
nodes bandwidth in the deterministic case on some simple
examples of grids. All the results were computed for the
monodimensional case (the capacity of each node is indicated
in column “C”) with unitary weights edges and vertices,
the column “Multi” in Table I showing the solutions found
by running the multi-start version of the heuristic (with 10
iterations) and the column “Time” showing the running time
for one iteration in average over 10 iterations. The same

TABLE I
COMPUTATIONAL RESULTS OF THE ALGORITHM IN THE DETERMINISTIC

CASE

Inst. #Vertices #Nodes C Multi Time
Grid 4 × 4 16 4 4 8 ≈ 0

Grid 10 × 10 100 5 20 28 ≈ 0
Grid 23 × 23 529 14 40 150 0.12 s

multi-start version of the heuristic for the monodimensional
deterministic case was applied on the larger sizes instances
of Johnson et al. [9], the solutions values found having
an average differential approximation ratio [10] of 5.22%
compared to the best known value.

These results are only provided for self-containedness
purpose and for serving, in the next section, as a possible
measure of the price of robustness of the solutions obtained
by our algorithm which is taking into account the uncertain-
ties affecting the weights of the vertices.

Results for the stochastic version

We have tested our adaptation of the algorithm for the
stochastic case on the same benchmark varying the parame-
ters ε and α in the range {0.01, 0.05}. To use the benchmark
as a set of stochastic instances, we have considered that
the weights of the vertices are random variables with the
aforementioned bimodal distribution and we have generated
corresponding samples of size 100 and respectively 1000.

The method has been implemented in C and, for each in-
stance, 10 random iterations of our algorithm were executed.

Tables II - IV summarize the numerical results for the grid
problems for different values of the parameters NS, ε and
α. As already reported, extensive computational experiments
were also performed on the benchmark instances of Johnson
[9].

For each instance from the data sets, we performed two
tests. The first one consists in keeping the same node

TABLE II
COMPUTATIONAL RESULTS OF STOCHASTIC METHOD FOR NS = 100,

ε = 0.05, α = 0.05

1st test 2nd test
Name #nodes sol time C sol time

Grid 4 × 4 6 14 ≈ 0 4.71 12 ≈ 0
Grid 10 × 10 6 38 0.02 s 23.3 29 0.01 s
Grid 23 × 23 16 182 1.12 s 44.1 173 0.99 s

TABLE III
COMPUTATIONAL RESULTS OF STOCHASTIC METHOD FOR NS = 1000,

ε = 0.05, α = 0.05

1st test 2nd test
Name #nodes sol time C sol time

Grid 4 × 4 6 14 ≈ 0 4.712 12 ≈ 0
Grid 10 × 10 6 37 0.16 s 23.273 37 0.13 s
Grid 23 × 23 16 182 11.23 s 44.13 172 9.65 s

TABLE IV
COMPUTATIONAL RESULTS OF STOCHASTIC METHOD FOR NS = 1000,

ε = 0.01, α = 0.01

1st test 2nd test
Name #nodes sol time C sol time

Grid 4 × 4 6 14 ≈ 0 4.74 10 ≈ 0
Grid 10 × 10 6 37 0.15 s 23.36 37 0.13 s
Grid 23 × 23 16 182 10.75 s 44.183 193 9.67 s

capacity as for deterministic case (see, for example, column
C in Table I) and increasing the number of nodes until the
probabilistic constraint is satisfied. The numerical results of
this test, reported in section “1st test” of Tables II - IV are:
the minimal number of nodes for which the probabilistic
constraint is respected (column “#nodes”), the value of the
solution (column “sol”) and the execution time for one
iteration in average over 10 iterations (column “time”). For
the second test, we keep the same number of nodes as in the
deterministic case, but we increase the capacity of all nodes
until finding a feasible solution, satisfying the probabilistic
constraint. The results of this second test, reported in section
“2nd test” of Tables II - IV are: the minimal capacity of each
node for which we obtain a feasible solution (column “C”),
the solution value (column “sol”) and the execution time for
one iteration in average over 10 (column “time”).

Before continuing with the analysis of our results, it is
worthwhile noting that the solutions obtained in the second
experiment, by increasing the node capacity, are of better
quality than the solutions of the first experiment (see columns
“sol”) and can be adjustable more accurately. For example,
in Table III for the Grid 10 × 10, for finding a feasible
solution, we must add one more node but in this case the
solution found is too conservative since all the constraints are
verified. Of course, neither increasing the number of nodes
nor increasing the node capacity make sense in practice. Our
intent with these experiments is to get an idea of the cost of
the robustness independently of concrete systems constraints.

In evaluating the performance of our heuristic method,
between the main aspects we examine are: the quality of the
solution, the time factor and the capacity and the number of
nodes needed for finding a feasible solution.

As expected, for the first test, the quality of the stochastic
solutions is less than that for the deterministic version as
well as for the solutions found by the second test. Instead,
the stochastic solutions of the second test are close in
quality with the solutions found in the deterministic case.
By analyzing the 25 instances of Johnson, we observe that
there are 13 and respectively 15 instances with a gap in

the solution quality of less than 5% from the deterministic
solutions. When analyzing the results for a probability level
of 0.99 and a level of confidence of 0.99, we observe slight
increase in the number of solutions close to the deterministic
solutions. These results suggest that even if, in some cases,
the quality of the stochastic solutions can be less satisfying
than the quality of the deterministic solutions, the solutions
remain of a good quality and, more importantly, they are
guaranteed with a target probability level. Therefore our
stochastic algorithm is more suitable to address applications
with uncertain data.

By comparing the quality of solutions for different values
of the input parameters (NS, ε, α) it comes out for both
benchmarks that for the same probability and confidence
levels, the obtained solutions when varying the sample size
are quite similar, revealing that the performance of our
algorithm does not deteriorate as the number of samples
increases.

Concerning the computation time, we have observed an
average execution time of 48.04 sec. for a sample of size
1000 against 25.93 sec. for a sample of size 100 for the
Johnson instances in the second experiment (ε = 0.05,
α = 0.05). Although these results could be improved (e.g. by
code optimization and parallelism), such execution durations
are already acceptable in our application context with respect
to the usual compilation duration of a dataflow process
network on a many core architecture, even at the beginning
of the development cycle. The running times found for the
stochastic version of the algorithm confirm the theoretical
remarks (see Section V-D) on a linear increase in complexity
with a factor of NS in comparison of the deterministic case.

In our first experiment, we were interested in the number
of nodes needed for the stochastic case compared to the
deterministic one. Our computational tests show that the ratio
between the number of nodes for stochastic partitioning and
the number of nodes for deterministic partitioning of the
same instance is 1.5 except for Grid 23 × 23, for which
the ratio is equal to ≈1.14. The same ratio of 1.5 was found
for the Johnson instances.

For the second test, we analyzed the required increase in
capacity for solving the stochastic version of the problems.
The stochastic solutions of the instances reported in Tables
II - IV are obtained for an equally large increase in the
capacity of the nodes in the order of 1.1. For the Johnson
instances, the capacity of nodes for stochastic partitioning is
superior to the nominal capacity with ≈ 1.15. As one may
expect, keeping the same probability and confidence levels
and changing the sample size does not significantly affect
the minimal capacity of the nodes for which a valid solution
is found. On the contrary, imposing a higher probability
and confidence levels demands a minimal capacity of nodes
slightly larger (in the order of 0.001).

Analyzing the overall results, we observe that our stochas-
tic heuristic confirms the capacity of computing good solu-
tions, within an admissible average running time, even for
large instances.

VII. CONCLUSION

In this paper, we addressed the problem of chance-
constrained partitioning networks of communicating pro-
cesses, which arises in dataflow compilation for embedded
parallel systems. After a brief analysis of the sources of
uncertainties, we proposed a heuristic algorithm, combin-
ing statistical hypothesis testing with a randomized greedy
method originally designed for the deterministic case. In
our experiments the solutions computed have a quality
comparable to those computed by the deterministic version
(a property which cannot be expected to hold in general
for optimization taking into account data uncertainties), and
moreover they are statistically guaranteed at confidence level
1−α. Furthermore, this approach can solve, with an accept-
able solution quality, confidence level and computation time,
problems representative in size of our application context.

Additionally, this approach to chance-constrained pro-
gramming is general and could be applied to leverage algo-
rithms for the deterministic case for solving the stochastic
version of other combinatorial problems (when obtaining
experimental data is not an issue).

In further work, we plan to investigate two directions.
The first one is to design a parallelized and more efficient
implementation of our method. The other direction concerns
a more thorough analysis and characterization of execution
time distribution, using methods of static code analysis. This
will allow us to have a more accurate characterization of the
uncertainties affecting the weights of the processes.

REFERENCES

[1] Kalray, “Introduction to the MPPA technology. A technical overview,”
Tech. Rep. KETD-58, Kalray S. A., 2011.

[2] T. Goubier, R. Sirdey, S. Louise, and V. David, “ΣC: a programming
model and langage for embedded manycores,” in Lecture Notes in
Computer Science, vol. 7016, pp. 385–394, 2011.

[3] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified NP-
complete graph problems,” Theoretical Computer Science, vol. 1,
no. 3, pp. 237–267, 1976.

[4] C. E. Ferreira, A. Martin, C. de Souza, R. Weismantel, and L. Wolsey,
“The node capacitated graph partitioning problem: A computational
study,” Mathematical Programming, vol. 81, pp. 229–256, 1998.

[5] R. Sirdey and V. David, “Approches heuristiques des problèmes de par-
titionnement, placement et routage de réseaux de processus sur archi-
tectures parallèles clusterisées,” tech. rep., CEA LIST DTSI/SARC/09-
470/RS, 2009.

[6] D. Bertsimas and M. Sim, “The price of robustness,” Operations
Research, vol. 52, no. 1, pp. 35–53, 2004.

[7] A. Ben-Tal and A. Nemirovski, “Robust solutions of linear pro-
gramming problems contaminated with uncertain data,” Mathematical
Programming, vol. 88, pp. 411–424, 2000. 10.1007/PL00011380.

[8] A. Gaivoronski, A. Lisser, R. Lopez, and H. Xu, “Knapsack problem
with probability constraints,” Journal of Global Optimization, vol. 49,
pp. 397–413, 2011.

[9] E. Johnson, A. Mehrotra, and G. L. Nemhauser, “Min-cut clustering,”
Mathematical Programming, vol. 62, pp. 133–151, October 1993.

[10] M. Demange and V. Paschos, “On an approximation measure founded
on the links between optimization and polynomial approximation
theory,” Theoretical Computer Science, vol. 158, pp. 117–141, 1996.

