
A parallel simulated annealing approach for the mapping of large process networks

François GALEA

Embedded real time systems laboratory
CEA, LIST

Gif-sur-Yvette, France
francois.galea@cea.fr

Renaud SIRDEY

Embedded real time systems laboratory
CEA, LIST

Gif-sur-Yvette, France
renaud.sirdey@cea.fr

Abstract—We propose a parallel simulated annealing ap-
proach to solve a dataflow process network mapping problem,
where a network of communicating tasks is mapped into a set
of processors with limited resource capacities, while minimizing
the overall communication bandwidth between processors. The
speedups obtained using this approach enables us to solve
problems with more than one thousand tasks, on up to 48
processors, in reasonable time. Results have been obtained
by taking profit of the specific architecture of a Non-Uniform
Memory Access (NUMA) computer.

Keywords-simulated annealing; parallelism; process network
mapping.

I. INTRODUCTION

With the end of the frequency version of Moore’s law,

a new generation of massively multi-core microprocessors

is emerging. This has triggered a regain of interest for

the so-called dataflow programming models in which one

expresses computation-intensive applications as networks

of concurrent processes (also called agents or actors) in-

teracting through (and only through) unidirectional FIFO

channels. See e.g. [2] for a recent instantiation of this model.

On top of more traditional compilation aspects, compiling

a dataflow program in order to achieve a high level of

dependability and performance on such complex processor

architectures involves solving a number of difficult, large-

size discrete optimization problems amongst which graph

partitioning, quadratic assignment and (constrained) multi-

flow problems are worth mentioning [5].

In this paper, we focus on the problem of mapping a

dataflow process network (DPN) on a clusterized parallel

microprocessor architecture composed of a number of nodes,

each of these node being a small SMP, interconnected by an

asynchronous packet network. With that respect, we present

a parallel simulated annealing algorithms able to tackle

relatively large instances of that problem in a reasonable

amount of time.

The rest of this paper is organized as follows. Sect.

II formally state the DPN mapping problem as well as

justifies the practical relevance of choosing to design a

parallel simulated annealing for that problem from both an

optimization and a software engineering viewpoint. Sect.

III describes the structure of our algorithm and Sect. IV

provides some experimental results. Lastly, Sect. V conclude

the paper with some perspectives.

II. THE DPN MAPPING PROBLEM

A. Problem statement

Let T denote the set of tasks in the DPN and N the set

of nodes. Let R denote the set of resources offered by the

nodes (e.g., memory capacity, processing capability). Also,

let wtr denotes the consumption of tasks t in resource r,

qtt′ denote the bandwidth between tasks t �= t′ and dnn′

denote the routing distance between nodes n �= n′. Also,

for simplicity sake and with a slight loss of generality, we

assume that all nodes are identical and we denote by Cr the

capacity of any of the nodes for resource r.

Given the variables

xtn =

{
1 iff task t is assigned to node n,
0 otherwise,

our DPN mapping problem can then be expressed as the

following mathematical program:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize
∑
t∈T

∑
t′ �=t

∑
n∈N

∑
n �=n′

xtnxt′n′qtt′dnn′ ,

s. t.∑
n∈N

xtn = 1 ∀t ∈ T, (1)

∑
t∈T

wtrxtn ≤ Cr ∀n ∈ N, r ∈ R, (2)

xtn ∈ {0, 1} ∀t ∈ T, n ∈ N.

Constraints of type (1) simply express that each task must

be assigned to one and only one node and constraints of type

(2) requires that the node capacity is not exceeded.

This generalized quadratic assignment problem is straight-

forwardly NP -hard in the strong sense notably by restriction

to the Node Capacitated Graph Partitioning Problem [1]

(arbitrary network topology and bandwidths as well as

equidistant nodes), to the Quadratic Assignment Problem (in

the case where the capacity constraints allow to assign one

and only one task per node and where the internode distance

is arbitrary) as well as to the bin-packing problem. This

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.221

1781

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.221

1781

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.221

1787

list emphasizes the numerous sources of difficulties when

tackling this problem.

In terms of instance size, in our application context, we

have to be able to map networks with a few thousands of

tasks on architectures having a few tens of nodes. Such

an order of magnitude rules out exact resolutions methods:

the best known methods for the node capacitated graph

partitioning problems are limited to graphs with a few

hundreds of vertices, and the best known algorithms for

the QAP are limited to instances of size around 30 [4].

Due to the complex structure of the problem, induced by

its numerous facets, designing specialized heuristics is both

difficult and risky. On the contrary, it can be expected that

general purpose metaheuristic design paradigms, simulated

annealing for instance, will lead to more robust (although

more computation intensive) algorithms in particular with

respect to the stability of solution quality.

Furthermore, completely solving the DPN mapping prob-

lem also requires the calculation of the effective routing

paths across the packet network. Taken independently, this

problem is a minimum cost multi-flow with additional

constraints which render it NP -hard in the strong sense

(by restriction to 3-partition as well as to the directed

edge-disjoint path problem [3]). Still, for practical processor

architectures, the instances are of moderate size and can

be solved to optimality using off-the-shelf MILP solvers.

In the present paper, we ignore this part of the problem.

It should however be emphasized that building a tractable

mathematical model including both mapping and routing

path calculation is difficult and that our intent is to view

the latter problem as a slave problem of the former. This

will incur a non negligible increase in the computational

cost of the whole procedure but this will also coarsen the

grain of the per solution calculations which is a good thing

with respect to parallelism efficiency.

B. Algorithmic approaches

The DPN mapping problem crops up in the context

of building a dataflow compilation chain for parallel mi-

croprocessor architectures targeting the embedded market.

In this context, as already stated in the introduction, a

number of hard discrete optimization problems must be

solved. However, the operations researcher cannot ignore

the peculiarities of this context when designing appropriate

resolution algorithms. Indeed, the development cycle of an

embedded application requires a short programmer/target

feedback loop at the beginning of the development cycle

where the programmer’s intent is to obtain a first working

version of his application and to get its coarse-grained

structure right. On the contrary, towards the end of the

development cycle, it is usual to invest both human and

computing time (compilation time for say up to one night

can often be afforded at that point) for both fine tuning and

fine-grained optimizations. Thus, whereas the beginning of

the cycle requires fast heuristics and can do with solutions of

moderate quality, the use of more computationally intensive

algorithms as well as more powerful computer systems (for

compilation) is desirable at the end of the cycle.

Therefore, the DPN mapping problem needed to be ini-

tially tackled using fast algorithms. In order to do so, the

overall problem was decomposed in two problems which

were solved in sequence: a first GRASP-like algorithm was

used to partition the process network graph and those parti-

tions were subsequently assigned to the nodes by solving a

(relatively) small size QAP by means of simulated annealing

[5], [6]. Of course, an approach by decomposition disrupts

the problem structure in the sense that it unfairly favours

the first objective function which consists in minimizing

the network (i.e., internode) bandwidth irrespective of the

routing distance. Thus, although this initial approach is

suited for the beginning of the development cycle of an

embedded application, global resolution methods are com-

plementarily needed for better optimization towards the end

of this development cycle. For these reasons, as well as for

those discussed in the preceding section, we have designed

a parallel simulated annealing(-like) procedure for the DPN

mapping problem which is described in the next section.

C. Parallel Simulated Annealing

The literature regarding parallel metaheuristics is partic-

ularly large. However, only a very small number of works

specifically deal with multi-threaded or parallel simulated

annealing. Ram et al. [9] propose two distributed methods in

which n initial solutions are generated in a first collaborative

phase, then n sequential simulated annealing searches are

performed in parallel. Those methods are compared by

solving instances of the job shop scheduling and traveling

salesman problems. Lazarova [10] implemented a hybrid

distributed and dual-threaded simulated annealing method in

which the processors manage a part of the current solution.

The method is applied to instances of the room assignment

problem. Finally, Safaei et al. [11] presents a multi-threaded

simulated annealing method for a real bi-objective mainte-

nance scheduling problem with conflicting objectives. This

method consists of two threads, each optimizing one of the

objectives.

III. A PARALLEL SIMULATED ANNEALING ALGORITHM

A. Architecture-awareness

The target system is a Non-Uniform Memory Access

(NUMA) Dell server with four 2.1 GHz AMD Opteron 6172

processors, 64 gigabytes of RAM, running SUSE Linux

Enterprise server 11.1. Each of the processors consists of

two NUMA nodes of six cores each, giving us a total of 48

available cores on the whole system. The communication

channel between the processor sockets is a ring network of

HyperTransport links. Each of the sockets is connected to

the two NUMA nodes of the local processor using a pair of

178217821788

HyperTransport links. The six cores in each NUMA node

have direct access to a shared memory bank of 8 gigabytes

per node.

As it is a NUMA system, the whole memory is address-

able by any of the cores of the system. A memory access

(read or write) of one core to a memory area located on its

own NUMA node (a local access) directly passes through

the local memory controller of the node and therefore is

considered optimal. A memory access from one core to

a memory area on a different node (a remote access) re-

quires the data to be transferred through the HyperTransport

network, resulting in poorer performance. Therefore, the

performance of memory accesses is optimized if each core

pererably accesses memory areas which are located on its

NUMA node. Randomly accessing the whole memory by

all cores without taking the system memory topology into

account would lead to heavy use of the HyperTransport in-

terconnection, hence substantially low overall performance.

We developed our algorithm using the POSIX threads

application programming interface, which is suitable for

shared memory architectures. We made use of the Portable

Hardware Locality (hwloc) software package, which allows

to obtain precise information about the communication

topology between cores and memory. It also allows to have

accurate control on how threads are assigned to cores, as

well as how memory areas are assigned to NUMA nodes.

In our implementation, each thread is assigned to a

dedicated CPU core, and is not allowed to migrate from one

core to another. Each thread allocates memory on the NUMA

node of the core it runs on. We also make use of local

copies of the constant instance data on each NUMA node,

in order to minimize unnecessary communication on the

HyperTransport interconnection. More generally, we make

use of resource locality whenever possible.

We also tried to reduce the number of locks and mutual

exclusion, as they cause very important bottlenecks. Modern

processors allow atomic operations on variables in memory,

which are accessible through compiler intrinsics, which are

function-like calls, but actually are compiled into a specific

CPU instruction. They can be used to avoid using locking or

mutual exclusion when manipulating simple shared variables

like counters and pointers. Among the available atomic

operations, we make use of the add-and-fetch and compare-
and-swap operations. Add-and-fetch atomically adds a value

given as argument to an integer variable in memory (ie., its

address is contained in a pointer), and returns the new value.

It is useful for maintaining shared counters. Compare-and-

swap atomically compares the value of a variable in memory

with an argument value, and if the two values are equal, the

variable contents is assigned a new value given as second

argument. It returns a boolean value which is true if the

comparison was successful, and therefore the new value was

assigned. We use this to maintain a shared pointer to the

current solution. The technique consists in first reading the

current shared value, then use compare-and-swap to attempt

an update of the old value with the new one. If compare-and-

swap was successful, then we are done. Otherwise, we have

to decide if the new shared pointer still must be updated or

not with the local value.

It is important to note that even though the atomic intrin-

sics allow lockless management of shared data structures,

a performance bottleneck still may occur if data locality is

not taken into account. Atomic operations make heavy use of

the memory bus, so it is never a good idea to let all threads

constantly manipulate a single shared global variable.

Finally, we also had to solve a race condition when

deallocating obsolete solution data structures. Indeed, as we

use no mutual exclusion when reading and updating shared

pointers to the current solution, a race condition could occur

if a thread reads the pointer to the shared solution and starts

working on the data it points to, and if at the same time,

another thread updates the solution with a new one, and

decides to deallocate the memory area assigned to the old

solution data. This is solved by using reference counting,

and using a read-copy-update mechanism for managing

the deallocations. Reference counting implies managing a

counter for each instance of a shared data structure. The

reference counter for a shared data structure is initialized to

1 when it is designated as the new current solution. If the

pointer is updated, the reference counter of the previous data

structure is decremented. If a thread wants to use an instance

of the solution data structure, it first must increment the

reference counter for this instance; this is done atomically

using add-and-fetch. Then, when the thread has finished

working on a solution structure, it atomically decrements the

reference counter using add-and-fetch with value -1, and if

the returned value is zero, then no other thread is supposed

to be using that solution structure, so the data may be

deallocated. The problem is that reading the shared solution

pointer then incrementing the reference counter must be

done atomically, otherwise the structure may be deallocated

before the reference counter is incremented. For this, we

use a very simple implementation of the read-copy-update

(RCU) mechanism to manage the deallocations. When a

thread wants to access the shared solution, it first atomically

increments a shared counter associated to the shared pointer

to the solution data. Then, it can read the shared pointer

value and increment the reference counter for the data

structure it points to. It can now atomically decrement the

shared counter associated to the shared pointer. When a

thread wants to write a new value to the shared pointer,

it first gets the previous pointer value and sets the new one,

using the compare-and-swap mechanism described above.

Then it busy waits for the value of the shared counter to

reach the value 0. From this point we are sure no thread

is currently attempting to access the solution data we want

to release. Whenever a thread reads the shared solution data

pointer, it will access another structure, since the pointer has

178317831789

been updated; thus we can safely decrement the reference

counter for the previous solution data structure, potentially

deallocating it if the reference count reaches zero.

Please note that the RCU implementation we use is

very simplified compared to more classic implementations.

We replaced the grace period mechanism to check for

the possibility of deallocations with a simpler mechanism

using a shared counter. We also replaced the RCU callback

mechanism, which is supposed to manage the deallocation

after a grace period, with a simple busy-waiting loop for the

counter to reach zero. This has shown to be working very

well when solution structures are shared between up to 8

threads, with less than 0.1% of the overall CPU time spent

in busy-waiting.

B. Structure of the algorithm

Simulated annealing (SA) is an iterative process, which

step-by-step explores solutions by randomly generating a

new solution from a current solution, using a neigbourhood

function. Each generated solution is sumbitted to a proba-

bilistic test based on the solution value (or energy) variation

ΔE and a current temperature value T . The acceptance

probability is 1 when ΔE < 0, meaning the solution value

is decreasing, and it is e−
ΔE
T otherwise. If the test is

successful, the new solution becomes the current solution

from which new solutions are generated and tested.

To take profit from parallelism, we had to break that

process into parallel generation of neighbour solutions. Typ-

ically, all threads in a NUMA node create new solutions

from a shared solution in the local memory of that node.

Once an accepted new solution has been found, it has to be

decided if this new solution becomes the new shared current

solution. The method we employed is based on a timestamp

value we manage in solutions, in the following way: the

initial solution has a timestamp value of 0, then each newly

created solution is assigned a timestamp value equal to the

timestamp value of its predecessor plus one. Thus, one can

consider a timestamp difference between two solutions as

a distance measure between those solutions. As we want to

mimic as much as possible the behaviour of a sequential SA,

we favour new solutions with a greater timestamp value, ie.,
with further distance from the initial solution. We therefore

allow to change the shared solution only if the new solution

has a greater timestamp than the previous shared one.

The management of the global shared solution is as

follows: one thread by NUMA node is designated the leader
thread for that node. After the leader thread has updated the

shared solution on its NUMA node, it also tries to update the

global solution using the same timestamp criterion as above.

Symmetrically, when the leader thread attempts to get the

latest shared solution, it first fetches the global solution and

eventually updates the node-shared solution, still based on

this timestamp criterion.

The algorithm maintains global values for the current

temperature, the best solution value, and the worst solution

value. These values are used by the cooling scheme and the

stop criterion.

The parameters for our algorithm which determine the

initial temperature, the cooling scheme and the stop criterion

are inspired from [7], see also [8].

As initial temperature, we chose the value for a solution

we obtained using a first-fit greedy algorithm for the bin-

packing problem.

The number of steps in each temperature level is the

number of tasks to be placed.

When the number of steps is achieved by the threads,

one thread resets the step counter to zero, and updates the

temperature.

From temperature level k with temperature value Tk, we

compute the temperature for level k + 1 with the fomula:

Tk+1 =
Tk

1 + log(1+δ)
eP+1 Tk

where δ is a small positive number (we set it to 0.05), and eP
is the value for the worst solution of the problem. Typically,

the value for the worst known solution may be used.

The algorithm is stopped when the temperature reaches

Tf =
β(eP − e)

|T ||N | log 2− 3

where β is an expected difference ratio between the solution

obtained by the algorithm and the optimal solution, |T | is the

number of tasks, and |N | is the number of nodes. Experience

showed that small values for β such as 0.05 tend to make the

end of the algorithm execution spend a lot of time without

finding any better solution; we use the value 0.2 which

tends to reduce execution time while still obtaining the best

solution values we find when β = 0.05.

For more information about SA parameter tuning, please

refer to [7].

C. Positioning versus sequential execution

This parallel algorithm clearly does break some basic

aspects of the traditional sequential simulated annealing. The

SA process is often considered equivalent to a random walk

into the solution space, which is dependent on the current

temperature level. At fixed temperature, the SA algorithm

executes a random walk which simulates an homogeneous

Markov chain. Once the stationary distribution of that chain

is assumed to be achieved, the temperature is updated

(decreased) using the cooling schedule and a new random

walk begins.

In the opposite, our algorithm performs parallel steps

from the same starting point, so this is a different process.

However, we have to keep in mind that the practical per-

formances of the SA algorithm is not too sensitive with

respect to the order in which the solution are explored

178417841790

Table I
INSTANCES OF THE PROBLEM

Instance #tasks #nodes node capacity
12× 12 144 4 40
18× 18 324 9 40
23× 23 529 16 40
31× 31 961 25 40
37× 37 1369 36 40

despite of the fact that it disrupts some known sufficient

conditions for convergence of the algorithm. Thus, we can

assume that if the number of solutions explored is high

enough, the parallel and sequential exploration methods can

be considered equivalent.

Note that if our algorithm is run on a single thread, the

corresponding random walk is exactly that of a sequential

SA algorithm. When the number of parallel threads is

large, the process is drastically different. However, at early

stages of the algorithm, the temperature decreases quickly

to achieve temperature levels for which the probability for

a new solution to be rejected is very close to one. Most

of the solution tests will be rejected, no matter the level of

parallelism.

IV. EXPERIMENTAL RESULTS

We tested our parallel SA algorithm on the 48-core Dell

NUMA server we described above. Proper knowledge of the

architecture allowed us to obtain satisfactory results when

using all 48 cores in a single parallel search procedure.

A. Instances

The instances we used in this article are square grids of

tasks we map on a square torus network of nodes. Only one

resource is taken into account. Each task takes one resource

unit, meaning the resource constraints limit the number of

tasks assigned to a node.

Table I lists the different instances we worked with. The

name of each instance corresponds to the grid size of the

task layout. The node layout is a square torus, hence the

number of nodes in all instances is a square value.

For each pair of tasks (t, t′), the bandwidth qtt′ is set

to 1 if tasks t and t′ are adjacent in the task grid, and 0

otherwise. For each pair of nodes (n, n′), the distance dnn′

is the Manhattan distance between nodes n and n′.

B. Computational results

We run our algorithm on the instances using different

numbers of cores. Several runs were performed for each

instance and number of cores, in order to extract statistical

information about average solution time, average solution

value and best solution value among the different runs. The

statistics for instances 12×12 to 23×23 were obtained using

10 runs. Instance 31 × 31 was run 8 times for numbers of

cores of 6 and above. Instance 37×37 was run 4 times using

between 12 and 48 cores.

Table II
AVERAGE SOLUTION TIMES (SECONDS)

Cores used
Instance 1 2 4 6 12 24 48
12× 12 4.26 2.77 1.66 1.43 0.83 0.50 0.37
18× 18 92.5 52.7 27.5 19.3 10.5 5.81 3.65
23× 23 589.6 324.4 164.6 113.0 58.3 31.8 18.9
31× 31 - - - 1090 561 291 156
37× 37 - - - - 2428 1230 654

Table III
AVERAGE SPEEDUP VS. SEQUENTIAL TIME

Cores used
Instance 2 4 6 12 24 48
12× 12 1.54 2.57 2.98 5.13 8.50 11.5
18× 18 1.76 3.36 4.80 8.78 15.9 25.4
23× 23 1.82 3.58 5.21 10.11 18.5 31.2

Table II lists the average execution times of our solver

on all instances, when using different numbers of cores.

Runs using 1 to 6 cores always use the cores inside a single

NUMA node. Twelve-core runs use the cores in the two

NUMA nodes inside the same processor, and 24-core runs

are executed on the 24 cores of two 12-core processors.

Execution times for the biggest instances (31 × 31 and

37 × 37) are only shown using parallel execution. Table

III lists the corresponding speedups compared to single-

threaded execution, on instances for which sequential ex-

ecution could be done in affordable time.

One can observe significant speedups when comparing

the sequential and parallel execution on the three smallest

instances. A trend appears, tending to show that larger

instances benefit more from a larger number of cores (31.2

speedup on 24 cores for the 23× 23 instance). This shows

that efficient results can be achieved when taking profit from

the knowledge of the memory and processor topology of

such NUMA architectures.

We also compared the results in terms of quality. Average

solution values are listed in Table IV. Minimum solution

values are shown in Table V. Table IV clearly shows that

when the number of used cores increases, the average quality

of the obtained solutions tends to get worse and worse, even

though the deviation is lower than 10% between sequential

execution and 48-core execution.

We can observe from Table V that even though the mini-

mum solution value between consecutive runs is significantly

lower than the average value, this difference is below 10%,

and is not higher than what could be expected from any type

of metaheuristics, even sequential.

V. CONCLUSION

We have presented a parallel simulated annealing ap-

proach to solve instances of the DPN mapping problem. We

shown that efficient speedups can be achieved using all 48

cores of the NUMA server we used.

178517851791

Table IV
AVERAGE SOLUTION VALUES

Cores used
Instance 1 2 4 6 12 24 48
12× 12 24 24 24 24 25 25.1 25.9
18× 18 81 81.4 81.9 83.1 84 84.3 88.3
23× 23 160 160.5 156.6 158.4 161.3 169.3 173.3
31× 31 - - - 326.1 329.7 344.7 346.3
37× 37 - - - - 508.5 509.5 536.6

Table V
MINIMUM SOLUTION VALUES

Cores used
Instance 1 2 4 6 12 24 48
12× 12 24 24 24 24 24 24 24
18× 18 78 78 79 80 80 81 80
23× 23 154 154 148 152 146 153 163
31× 31 - - - 298 298 317 314
37× 37 - - - - 485 494 509

Even though the quality of the solutions tends to decrease

when the number of cores is large, our results still show that

one can take profit from parallelism to much faster obtain

good solutions.

The deviation of the solution quality is certainly due to

the fact that our algorithm clearly breaks the behaviour of

the sequential SA, especially when the solution is updated

often, which is the case at early stage of the execution, when

the temperature is high. However, the temperature drops

relatively fast, to reach a point where almost every newly

generated solution is rejected; in that case, sequential or

parallel execution is equivalent. One solution to this solution

quality problem could then be to increase the number of

solution generation steps between temperature decreases at

high temperatures, at the cost of slightly longer execution

time, hence lower speedup.

Another perspective, as already stated in Sect. II-A,

consists in taking the routing path calculation problem

into account within our algorithmic framework. Since that

problem will be viewed as a slave problem i.e., it will be

solved either approximately or exactly for each admissible

mapping and the resulting economic function will be taken

into account in the global objective function, this will be

done without much destructuring of the algorithm. However,

although this inclusion can be expected to significantly

increase the overall calculation time, it can also be expected

to increase the efficiency of our parallelization scheme. Also,

another perspective, consists in generalizing our algorithmic

framework to cope for the stochastic nature of the tasks

weights (which depends in part on computing kernels exe-

cution times which are themselves random variables) along

the line of the generalization of the GRASP-like heuristic

for the DPN mapping problem presented in [6]. Again, this

can be expected to induce a non negligible supplementary

computation cost, little destructuring and an increase in

parallelism efficiency. Whether such a complete algorithm

for the global stochastic DPN mapping problem is practical

remains of course to be experimentally assessed.

REFERENCES

[1] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel and
L. A. Wolsey (1998): “The node capacitated graph partitioning
problem: a computational study”, Mathematical Programming
81, pp. 229-256.

[2] T. Goubier, R. Sirdey, S. Louise and V. David (2011): “ΣC: a
programming model and langage for embedded many-cores”,
LNCS 7016, pp. 385-394.

[3] B. Korte and J. Vygen (2006): “Combinatorial optimization”,
Springer.

[4] E. M. Loiola, N. M. N. de Abreu, P. O. Boaventura-Netto,
P. Hahn and T. Querido (2007): “A survey for the quadratic
assignment problem”, European Journal of Operationnal Re-
search 176, pp. 657-690.

[5] R. Sirdey (2011): “Contributions à l’optimisation combinatoire
pour l’embarqué : des autocommutateurs cellulaires aux micro-
processeurs massivement parallèles”, HDR Thesis, Université
de Technologie de Compiègne.

[6] O. Stan, R. Sirdey, J. Carlier and D. Nace (2012): “A heuristic
algorithm for stochastic partitioning of large process net-
works”, submitted for publication.

[7] R. Sirdey, J. Carlier and D. Nace (2009): “Approximate
solution of a resource-constrained scheduling problem”. J.
Heuristics 15, pp. 1-17.

[8] P. J. M. van Laarhoven and E. H. L. Aarts (1987): “Simu-
lated annealing: theory and applications”. Kluwer Academic
Publisher.

[9] D.J. Ram, T.H. Sreenivas and K.G. Subramanian (1996):
“Parallel simulated annealing algorithms”. Journal of Parallel
and Distributed Computing 37 (2), pp. 207-212.

[10] M. Lazarova (2008): “Parallel simulated annealing for solving
the room assignment problem on shared and distributed mem-
ory platforms”, ACM International Conference Proceeding
Series Vol. 374(2), Proceedings of the 9th International Con-
ference on Computer Systems and Technologies and Workshop
for PhD Students in Computing, Gabrovo, Bulgaria, pp. 1-6.

[11] N. Safaei, D. Banjevic and A. K.S. Jardine (2011): “Multi-
threaded simulated annealing for a bi-objective maintenance
scheduling problem”. International Journal of Production Re-
search, DOI:10.1080/00207543.2011.571444, pp. 1-19.

178617861792

