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a b s t r a c t

This study deals with the two-stage hybrid flow shop (HFS) problem with precedence constraints. Two

versions are examined, the classical HFS where idle time between the operations of the same job is

allowed and the no-wait HFS where idle time is not permitted. For solving these problems an adaptive

randomized list scheduling heuristic is proposed. Two global bounds are also introduced so as to

conservatively estimate the distance to optimality of the proposed heuristic. The evaluation is done on

a set of randomly generated instances. The heuristic solutions for the classical HFS in average are

provably situated below 2% from the optimal ones, and on the other hand, in the case of the no-wait HFS

the average deviation is below 5%.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

This work considers the hybrid flow shop problem under
precedence constraints. More precisely the two-stage hybrid
flow shop HFð1,PmÞ with precedence constraints at the second
stage is studied, by abuse of notation we denote it HFS in what
follows. Assume a set of n jobs has to be processed in two
stages. There is only one machine for the first stage and m

identical parallel machines for the second stage. Each job
iAf1, . . . ,ng consists of two operations: the first operation of
duration ai40 is executed at the first stage, and afterwards the
second operation of duration bi40 is executed at the second
stage. No preemption is allowed in operation execution. The
precedence constraints of the operations at the second stage are
given by a directed acyclic graph G¼ ðV ,EÞ, where V represents the
set of jobs and E gives the dependence relations between those
jobs. There are no precedence constraints between the operations
at the first stage.

The objective is to minimize the maximum completion time or
makespan. Two different cases of HFS can be distinguished: the
no-wait HFS when once a job has started it is executed on all the
stages without being interrupted (the end time of the first stage
operation coincides with the start time of the second stage
operation) and the classical HFS when no such constraint is
ll rights reserved.
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imposed. In the ajbjg notation the flow shop problems we
examine are HFð1,PmÞjG1 ¼ |, G2 ¼ GjCmax and HFð1,PmÞjG1 ¼ |,
G2 ¼ G, no�waitjCmax.

Despite that no precedence relations are defined for the first
stage operations, the second stage constraints can be extended
over the first stage because they are dominating the order in
which the first stage operations are executed. This fact is obvious
in the case of no-wait HFS. On the other hand it can be easily
shown that for any given solution in a classical HFS, rescheduling
the first stage operations following the same second stage
schedule does not change the solution value. Hence, in what
follows we consider that if a second stage operation must be
executed after another second stage operation then the corre-
sponding first stage operations must follow the same order.

A practical application of the HFS problem arises in modeling
the execution of an algorithm on a parallel computer. Each
algorithm task can be viewed as two consecutive operations,
the first one is the loading of the data used by the task from the
external memory and the second one is the task execution itself.
Usually in a parallel computer the memory accesses are done
sequentially, so only one data loading can be done at a time,
whereas the execution of the tasks can be done concurrently on
the available processors. Hence the data loading corresponds to
the first stage operation in the HFS problem, and the task
execution corresponds to the second stage operation. Second
stage precedence relations between the operations are equivalent
to the partial order of algorithm tasks and reflect the internal data
dependencies (amongst other dependencies). In order to limit the
data buffering, the execution of a task has to start when its data
loading is finished, this corresponds to the no-wait case of the
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Fig. 1. Second stage idle time needed to execute first stage operations (in this

example the total idle time equals to ðas1
þas2

þas3
�bs1

Þþðas1
þas2

Þ).
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HFS, whereas the classical HFS corresponds to the case when no
space limit is imposed on the data buffering.

The paper is organized as follows: after a brief description of
related works in Section 2, two global lower bounds are intro-
duced in Section 3. Section 4 presents a list scheduling heuristic,
and, in Section 5 we describe a randomized version of this
algorithm. In Section 6 the lower bounds and heuristics perfor-
mances are compared using randomly generated instances and
Section 7 concludes the paper.
2. Related works

The literature on the hybrid flow shop problem under pre-
cedence constraints is quite scarce, even though a lot of work
exist on the hybrid flow shop and on the flow shop with
precedence relations. For a review of the plentiful work on the
hybrid flow shop problem we refer to [1,2]. We shall note that
most of the work is done for the general m-stage hybrid flow
shop, nevertheless many authors tried to adapt the Johnson
algorithm for the two-stage flow shop. A model close to ours,
the two-stage hybrid flow shop with parallel machines at first
stage only is studied in [3]. The authors determine the optimal
ordering at the second stage given a scheduling of jobs on first
stage and introduce some interesting lower bound concepts.

Although less represented in the literature, the flow shop
problem under precedence constraints is quite well studied. In
[4] the authors provide a classification of two and three machine
flow shop problems under machine-dependent precedence con-
straints. Different models of shop scheduling problems with
precedence constraints are considered in [5]. In their study the
authors introduce two types of precedence constraints and
provide complexity results and some polynomial time algorithms
for shop scheduling models. The authors of [6] propose to reduce
the job shop problem to a flow shop problem under precedence
constraints, and introduce several modified flow shop heuristics
for solving the flow shop problem constrained by precedence
relations.

The hybrid flow shop problem under precedence constraints is
studied in a few papers [7–9,1], from an applicative point of view.
In the studies mentioned above some heuristics are proposed. The
authors are using stage-independent precedence relations
between the jobs and different optimization criteria.
3. Lower bounds

Without loss of generality we suppose, in what follows, that
the digraph G¼ ðV ,EÞ describing the precedence relations between
the operations at the second stage contains one source vertex,
denoted 0, and one sink vertex, denoted n, with zero processing
times. Also we suppose that the number of jobs is greater than the
number of available second stage machines, n4m.

3.1. Global lower bound 1

Some concepts of the following lower bound were introduced
in [10] for the hybrid flow shop problem. We have adapted it in
order to take advantage of the second stage precedence relations.

GLB1¼maxðGLB11,GLB12
Þ

In the first part GLB11 of the bound we take into account that
there is inevitably an idle time at the second stage machines
during the execution of the first mþ1 jobs. During this idle time
the first stage operations of the respective jobs are executed (see
Fig. 1 for an illustration).
Let s1, . . . ,smþ1 be the ordering of the first executed mþ1 jobs
at the first stage, si represents the job in position i. For any
precedence constraint between two jobs i, j, thus any edge ði,jÞAE

of graph G, if both jobs i, j belong to the ordering then relation
s�1

i os�1
j must be satisfied (s�1

i is the position of job i). The
precedence relations can be rephrased as: operation s1 has to be a
successor of the source node 0 such that s1 has only one
predecessor (which is the source node itself), operation sk must
satisfy predðskÞDf0,s1, . . . ,sk�1g, and so on. Here succði1, . . . ,ikÞ,
predði1, . . . ,ikÞ, represents the union of successors, respectively,
predecessors, of vertices i1, . . . ,ik in the graph G.

The idle time at the second stage machine where job sk is
executed is at least

Pk
i ¼ 1 asi

þmaxð
Pmþ1

i ¼ kþ1 asi
�bsk

,0Þ. For the
ordering s1, . . . ,smþ1 the total second stage idle time is

Z1 ¼
Xm

k ¼ 1

Xk

i ¼ 1

asi
þmax

Xmþ1

i ¼ kþ1

asi
�bsk

,0

 ! !

The sum between the minimum possible idle time Z1 and the
total amount of the second stage jobs duration divided by the
number of available second stage machines gives a lower bound
on the execution time. As all processing times are integers the
lower bound should have also an integer value, a ceiling operator
d e is used for this purpose:

GLB11
¼

1

m
Z1þ

Xn

i ¼ 1

bi

 !& ’

In order to find the sequence s1, . . . ,smþ1 which satisfies the
precedence constraints and minimizes Z1, the following combi-
natorial problem must be solved:

Z1 ¼Minimize
Xm

k ¼ 1

Xk

i ¼ 1

asi
þmax

Xmþ1

i ¼ kþ1

asi
�bsk

,0

 ! !

s:t: predðskÞDf0,s1, . . . ,sk�1g

The following relaxation makes this problem solvable in
polynomial time (here relation ancðlÞ gives the ancestor vertices
of vertex l):

Z01 ¼Minimize
s1

k

Xm

k ¼ 1

as1
k
ðm�kþ1Þ

þMinimize
s2

k

Xm

k ¼ 1

max
Xmþ1

i ¼ kþ1

as1
k
�bs2

k
,0

 !

s:t: jancðsl
kÞjrk, l¼ 1,2

The relaxation consists in minimizing the two parts of the
objective function separately. First, an ordering s1 that minimizes
the left hand side of Z01 and afterwards a new ordering s2 which
minimizes the right hand side of objective, should be found. The
solution of the relaxed problem can be used for lower bound
calculation in place of the initial problem solution because
Z01rZ1. Algorithm 1 finds the solution Z01 of the relaxed problem.
We shall note that in our experiments, we have obtained a
deviation between the optimal global lower bound (calculated
using Z1) and the relaxed version (calculated using Z01) less than
0.2%. This fact indicates that there is no much benefit from using
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the optimal calculation for Z1 when compared to relaxed compu-
tation Z01, especially that in the majority of cases (475%) the
same solution is found.

Algorithm 1. Algorithm for finding the optimal solution of the
relaxed problem used in GLB11 calculation.
Fig. 2.

Fig. 3
1:
 B1,B2 ¼ |

2:
 for k¼1 to mþ1 do

3:
 s1

k ¼ argminai, such that jancðiÞjrk and i=2B1
4:
 B1 ¼ B1 [ fs1
kg
5:
 s2
k ¼ argmaxbi, such that jancðiÞjrk and i=2B2
6:
 B2 ¼ B2 [ fs2
kg
7:
 end for

8:
 Z01 ¼ 0
9:
 S¼ as1
mþ 1
10:
 for k¼m to 1 do

11:
 Z01 ¼ Z01þas1

k
� ðm�kþ1ÞþmaxðS�bs2

k
,0Þ
12:
 S¼ Sþas1
k

13:
 end for
The second part GLB12 of the bound takes into consideration
the fact that the execution cannot finish before all the operations
at the first stage are processed. Additionally, in the best case, the
last operations executed at the second stage are those that are
predecessors of the sink node and have minimal processing times.
Refer to Fig. 2 for an illustration of such configuration.

Let s1, . . . ,sm be the last m jobs executed at the second stage in
reverse order, that is s1 is the last job, s2 is the penultimate one,
etc. Like in the previous case, job precedence relations must be
satisfied. Thus, the job in position k, k¼1,y,m, must satisfy
succðskÞDfn,s1, . . . ,sk�1g.

Job sk can start at the second stage, only after all the first stage
operations which are executed before are finished. In this case,
the completion time of job sk is at least

P
iaiþZk

2, where
Zk

2 ¼ bsk
�
Pk�1

i ¼ 1 ai represents the exceedance of job k over the
total first stage workload.

A lower bound for the HFS problem is given by (1), where Z2

represents the least possible exceedance for any sequence of final
jobs. In order to find the ordering of last m operations for which Z2
Final moments of a HFS with three machines at the second stage.

. Solution Z02 compared to the initial one Z2. On the righthand side in dashe
is minimal the combinatorial problem (2) must be solved.

GLB12
¼
Xn

i ¼ 1

aiþZ2 ð1Þ

Z2 ¼Minimize max
k ¼ 1,...,m

bsk
�
Xk�1

i ¼ 1

asi

 !

s:t: succðskÞDfn,s1, . . . ,sk�1g ð2Þ

Proposition 1. Optimal solution of optimization problem (2) is

given by the recurrent relation

sk ¼ arg min
i=2fn,s1 ,...,sk�1 g

succðiÞD fn,s1 ,...,sk�1 g

bi

for all k¼ 1, . . . ,m.

Proof. Suppose that s1, . . . ,sm is the optimal solution of the
problem having value Z2, and also, suppose that there exists an
operation p, succðpÞ ¼ n, such that bpobs1

:

1.
d li
If p=2fs1, . . . ,smg a new solution p,s1, . . . ,sm�1 (see Fig. 3 for an
illustration) will have the following value:

Z02 ¼max bp,bs1
�ap, . . . ,bsm�1

�
Xm�2

i ¼ 1

asi
�ap

 !

¼max bp, max
m�1

k ¼ 1
bsk
�
Xk�1

i ¼ 1

asi

 !
�ap

 !
rZ2

The last result, Z02rZ2, contradicts the fact that Z2 is the
optimal solution.
2.
 If pAfs1, . . . ,smg a new solution can be obtained by moving
operation p before s1 (thus, p will be the last executed job). In
an analogous way, we prove that the new solution is better.

We deduce that in an optimal solution s1 ¼ argmin8i,succðiÞ ¼ nbi.
Applying the same methodology the proposition is proved by
induction. &

Algorithm 2 finds the optimal solution for the minimization
problem in polynomial time using the previous result.

Algorithm 2. Algorithm for finding the optimal solution Z2 of the
problem used in GLB12 calculation.
ne are
1:
 A¼ fijiApredðnÞ,succðiÞ ¼ ng
2:
 B¼ |

3:
 for k¼1 to m do

4:
 sk ¼ argminbi, such that iAA and i=2B
5:
 B¼ B [ fsig
6:
 A¼ A [ fijiApredðskÞ,succðiÞDfn,s1, . . . ,sk�1gg
7:
 end for
presented execution intervals of operations in the initial solution.
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8:
 Z2¼0

9:
 S¼0

10:
 for k¼1 to m do

11:
 Z2 ¼maxðZ2,bsk

�SÞ
12:
 S¼ Sþak
13:
 end for
3.2. Global lower bound 2

In this subsection we introduce a global lower bound based on
release times (heads) and delivery times (tails) adjustments. Let
us assume that operation i cannot start earlier than its release
date ri, it is processed for either ai or bi time in function of the
stage and must remain in the system for at least qi time, which is
the tail of operation i. In order to differentiate the first stage heads
and tails from the second stage ones they are superscripted, so

rI
i ,q

I
i are the heads and tails at the first stage and, respectively,

rII
i ,qII

i at the second stage. We use heads and tails instead of

release dates and deadlines because many constraint concepts
can be symmetrically expressed for heads and tails.

A straightforward lower bound is (3), the first stage release
dates and tails are not taken into account because they are
dominated by the second stage heads and tails:

GLB2¼max
i
ðrII

i þbiþqII
i Þ ð3Þ

In what follows we introduce several constraints that the heads
and tails must satisfy. Using constraint propagation techniques
the heads and tails are iteratively adjusted until no modification
is observed, the obtained GLB2 is a lower bound to the HFS
problem.

3.2.1. Inter-stage precedence relations

In a two-stage flow shop the first stage operation of a job i

must finish before its second stage operation starts: rII
i ZrI

iþai. In
the case of a no-wait flow shop this relation is more constrained
by the fact that no idle time is permitted between the stages, so
for the no-wait HFS we have rII

i ¼ rI
iþai.

The same type of relations can be deduced for job tails:
qI

i ZqII
i þbj for the classic HFS and qI

i ¼ qII
i þbj for the no-wait case.

3.2.2. Jobs precedence relations

The precedence relation graph G¼ ðV ,EÞ for second stage
operation is translated into the following constraint: rII

i ZrII
j þbj

for all jApredðiÞ. Symmetrically for job tails: qII
i ZqII

j þbj for all
jAsuccðiÞ. For the no-wait HFS the second stage precedence
relations directly influence the partial order of the first stage
operations because of relations introduced in the previous sec-
tion. In the case of classic HFS things are a little bit different, but it
can be easily proved that the second stage precedence relations
are dominating over the first stage ones.

3.2.3. Cumulative previous work

As said above, the second stage precedence constraints define
a partial ordering over the first stage operations, thus before the
execution of the first stage operation i can start, all its first stage
ancestors, defined by the second stage precedence constraints,
must be completed. The release date ri

I must be larger than the
minimum makespan of a one-machine scheduling problem with
release dates composed of ancestors of operation i. Let CrI

maxðiÞ be
the optimal makespan of problem 1 jrjjCmax for operations
jAancðiÞ with release dates rj and processing times aj, then the
head of the first stage operation i must satisfy rI

i ZCrI

maxðiÞ.
The one-machine scheduling with release dates for jobs

j1, . . . ,jp is solved in polynomial time using the recurrent relation
(Jackson’s rule) cjk
¼maxðrjk ,cjk�1

Þþajk
with initial conditions

cj1
¼ rj1
þaj1

and rj1 rrj2 r � � �rrjp
. Completion time cjp

of the last
job is the solution of the problem.

A straightforward relaxation of this constraint is rI
i Z
P

jAancðiÞaj

which has a linear time computation, but it produces weaker
release date bounds.

A constraint for the tails of the first stage operation is obtained
in a similar way. The tail of operation i must satisfy qI

i ZCqI

maxðiÞ

where CqI

maxðiÞ is the solution of the one-machine scheduling
problem for descendants jAdescðiÞ with release date qj and
processing times aj. A direct relaxation is obtained equivalently
qI

i Z
P

jAdescðiÞajþminjAdescðiÞq
I
j . In the above expression, the ‘‘min’’

term is added because the tails are not necessary zero as in the
case with release dates.

In order to deduce equivalent relations for the heads and tails
of the second stage operations, the parallel processor scheduling
problem PmjrijCmax should be solved. The later problem is
NP-hard [11], thus a polynomial algorithm for solving it does
not exist (unless P ¼NP). The parallel processor scheduling
problem can be relaxed to a one-machine scheduling problem
by dividing the processing times of the jobs by the number of
processors. That is to say, we consider that a job can be executed
simultaneously on all of the available processors.

For the second stage operation i, we consider the one-machine
scheduling problem 1 jrjjCmax for ancestor jobs of i with proces-
sing times b0j ¼ bj=m and release dates rj

II for any jAancðiÞ. Let
CrII

maxðiÞ be the optimal makespan of the above problem. The
release date of the second stage operation i must satisfy
rII

i ZdC
rII

maxðiÞe, a ceiling operator is used because the release date
must be integer. A linear relaxation of the above constraint is

rII
i Z

P
jAancðiÞbj

m

� �
þ min

jAancðiÞ
rII

j

Symmetrically for the tails of the second stage operation i the
following constraint is deduced qII

i ZCqII

maxðiÞ. Where CqII

maxðiÞ is the
optimal solution of the one-machine scheduling problem for the
descendants jAdescðiÞ of operation i with processing times
b0j ¼ bj=m and release dates qj. Equivalently the following linear
relaxation is inferred, here we have minjAdescðiÞq

II
i ¼ qII

n
¼ 0:

qII
i Z

P
jAdescðiÞbj

m

� �

3.2.4. Jackson’s preemptive schedule

Jackson’s preemptive schedule (JPS) was introduced in [12]. It
gives the optimal makespan for the preemptive one-machine
scheduling with release dates and delivery times 1
jri,qi,pmntjCmax. The obtained makespan value is a tight lower
bound for the non-preemptive problem 1 jri,qijCmax. JPS is the list
schedule found by prioritizing the jobs with the most remaining
work. The jobs are examined in increasing order of their release
dates. At time instant t the job with the largest delivery time
among the available jobs is scheduled, even if another job is in
execution.

In GLB2 calculation the HFS problem is relaxed to 1 jrI
i ,q

I
i jCmax

by dropping out the second stage and looking only at the first
stage problem. The JPS is then used to adjust the global lower
bound GLB2.

The JPS can also be used to adjust the heads and tails of
operations. To adjust the head of operation c, one can build the JPS
schedule where operation c has an infinite priority, thus operation
c will start at time rc. If the obtained schedule length is bigger
than the upper bound UB of the HFS problem then the head of
operation c can be increased. Let aþi be the residual processing
time of operation i at time rc in the modified JPS schedule. Take
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the operations of K þc ¼ fija
þ

i 40,qi4qcg in increasing order of qi

and find the first operation s for which relation rcþacþ
P

qi Zqs

aþi þqs4UB is satisfied. If such an operation exists then
rc ¼maxðrc ,maxqi Zqs CiÞ where Ci is the completion time of opera-
tion i in the usual JPS (where job c does not have an infinite
priority). See [13] for more information and for an OðnlognÞ

algorithm for updating the heads of all operations. Similarly the
tails of operations can be adjusted by interchanging the roles of
heads and tails.
3.2.5. Energetic reasoning

The previous constraints do not fully consider the limited
number of machines at the second stage. In order to do so, we use
the so called energetic reasoning in lower bound calculation for the
multiprocessor scheduling problem [14–16].

Let di ¼UB0�qII
i be the deadline of the second stage operation i,

where UB0 represents an attempt of upper bound for the HFS
problem. Given a time interval ½t1,t2�D ½0,UB0� we calculate for
each job i the left-work Wleftði,t1,t2Þ and the right-work

Wrightði,t1,t2Þ which represent the part of operation i that must
be processed between t1 and t2 when the operation starts as soon
as possible, thus at time ri

II, and, respectively, as late as possible, at
time di�bi. The mandatory amount of work for operation i over
the interval ½t1,t2� is the minimum between its left-work and
right-work:

Wði,t1,t2Þ ¼minðWleftði,t1,t2Þ,Wrightði,t1,t2ÞÞ

The total amount of work for interval ½t1,t2� is the sum of works
Wði,t1,t2Þ for all the operations:

Wðt1,t2Þ ¼
X

i

Wði,t1,t2Þ

If the total amount of work Wðt1,t2Þ exceeds the amount of
available ‘‘energy’’ mðt2�t1Þ then the problem is infeasible. This
property can be used to increase the global lower bound value. Let
L be the best value of GLB2 obtained so far. Set UB0 ¼ L and do the
above computations. If an interval ½t1,t2� for which the problem is
infeasible is found then the current UB0 value can be increased by
at least:

Dðt1,t2Þ ¼
Wðt1,t2Þ�mðt2�t1Þ

m

� �

The UB0 value is adjusted by adding it to the maximal increase
calculated for each time interval, the new value of UB0 becomes a
lower bound to the HFS problem:

UB0 ¼ Lþ max
½t1 ,t2 �D ½0,L�

ðDðt1,t2Þ,0Þ ð4Þ

The direct calculation of maximal increase using relation (4) is
pseudo-polynomial because the number of time intervals that
must be examined is proportional to L2. Hopefully not all the
intervals are relevant, in [14] it is proved that only Oðn2Þ increase
calculations are representative. Particularly, in a simplified ver-
sion, only the intervals ½t1,t2�, such that t1Afrig [ friþbig [ fdi�big

and t2Afdig [ friþbig [ fdi�big, have to be examined.
The available energy can also be used to calculate time-bound

adjustments for operations release dates and deadlines. Let
SLði,t1,t2Þ ¼mðt2�t1Þ�Wðt1,t2ÞþWði,t1,t2Þ be the available energy
over ½t1,t2� when operation i is not considered. If the left-work
Wleftði,t1,t2Þ of an operation i is bigger than the available energy
SLði,t1,t2Þ, then only a part, smaller or equal to SLði,t1,t2Þ, of i can
be processed during the interval ½t1,t2�. The release date of
operation i can be updated: ri ¼ t2�SLði,t1,t2Þ. Similarly if Wright

ði,t1,t2Þ4SLði,t1,t2Þ then the deadline is adjusted di ¼ t1þ

SLði,t1,t2Þ.
3.2.6. GLB2 computation

The computation of the global lower bound GLB2 is performed
as follows. First, the inter-stage precedence, jobs precedence and
cumulative previous work constraints are grouped into a con-
straint programming model and a constraint propagation method
is used to compute the heads and the tails for each operation. The
heads and tails obtained in this way are used in a list scheduling
heuristic (defined in the sequel) in the priority function calcula-
tion. The solution found by the list scheduling is an upper bound,
UB, for the HFS problem, which afterwards together with the JPS
and energetic constraints are added to the constraint program-
ming model defined above. Using the propagation technique new
and eventually better values for operations heads and tails are
obtained.

Due to the use in the JPS and energetic constraints of an upper
bound, it is clear that the more this upper bound is tight the more
the GLB2 is constrained, thus potentially better values for GLB2
could be obtained. The last fact motivated us to find an upper
bound candidate UB0, UB0A ½GLB2,UB�, such that for UB0 the HFS
problem is feasible and for UB0�1 the problem becomes infeasi-
ble. A dichotomization procedure is introduced in order to explore
the ½GLB2,UB� interval more optimally. In this way, a new global
lower bound GBL2dich

¼UB0 is obtained. The calculation of this
bound is pseudo-polynomial and depends on initial UB0 limits. In
our calculation experiments the dichotomization procedure takes,
in the worst case, less than 10 s, taking into account that the
optimization of the constraint propagation code was not
envisaged.
4. List scheduling

A reliable heuristic from the multiprocessor scheduling litera-
ture is the list scheduling (LS). Roughly speaking, in a LS algorithm
the tasks are ordered (statically or dynamically) according to a
priority rule and then are assigned in this order to the first
available processor. Different priority rules have been proposed.
Critical path based rules are known to provide the best results in
the context of multiprocessor scheduling.

Algorithm 3 is a modified version of the LS heuristic which is
used for solving the HFS problem. The main difference from the
list scheduling used in multiprocessor problems is that in this
algorithm the start time of a job takes into account also the first
stage processing. The following notation are used in the algo-
rithm: T is a variable that stores the time when the first stage
machine is available (initially it is available at instant zero). When
a second stage machine M is chosen for the current job to be
scheduled we denote by F the moment of time when it is
available. The only difference between the list scheduling we
propose for the classical and for the no-wait HFS consists in how
the update of the first stage machine availability time T is made
(algorithm line 10).

Algorithm 3. List scheduling (LS) algorithm for the HFS problem
(sj – second stage start time of job j).
1:
 S¼{0} {Jobs ready for scheduling}

2:
 s0¼0

3:
 T¼0

4:
 while Sa| do

5:
 Calculate priorities pi for jobs iAS
6:
 Choose top priority job j¼ argmaxiA Spi, S¼ S�j
7:
 Choose the earliest available second stage machine M

for j
8:
 Determine time F when machine M is available

9:
 Schedule j on M at time sj ¼maxðTþaj,FÞ
10:
 Classical HFS: T ¼ Tþaj. No-wait HFS: T¼sj
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11:
 S¼ S [ fiAsuccðjÞg such that all the predecessors of i are
finished
12:
 end while
Two priority rules are proposed. The first priority rule PI is
critical path based, particularly the CP/MISF (critical path/most
immediate successors first) rule described in [17]. Priority value
(5) is computed for each job iAS and the job with the largest pi

I is
chosen for being scheduled next:

pI
i ¼ qII

i þ
jsuccðiÞj

nþ1
ð5Þ

This priority function ensures that the next job to schedule is the
one which has the largest tail. Or, when the tails of two jobs are
equal, it selects the job with the largest number of successors.

A second rule PII is proposed because the critical path based
rule does not take into account the idle time a list scheduling
algorithm potentially creates at the first stage. In this priority
rule, the next job to schedule is the one that fits the best the first
stage machine free time, i.e. the job iAS having the highest value
(6) is chosen for scheduling (here we use the same notation as in
Algorithm 3):

pII
i ¼�jF�ðTþaiÞj ð6Þ

This priority rule has similarities with the ETF (earliest time first)
rule from the multiprocessor scheduling [18], and actually when
relation TþairF is satisfied, PII is the ETF priority rule.
1 As a multi-start heuristic, our algorithm can be straightforwardly

parallelized.
5. Adaptive randomized list scheduling

A drawback of the list scheduling heuristic is that it returns a
single solution by breaking any ties in the priority value of two or
more jobs arbitrarily. Bad decisions in choosing the job to
schedule (among the jobs having same priority), potentially,
makes the heuristic to find low quality solutions on some
instances. In order to overcome this drawback, the list scheduling
algorithm can be executed several times, each time breaking ties
randomly.

Inspired by the work [19] on the randomization of greedy
algorithms, we further generalize this method by introducing a
randomization parameter a, aA ½0,1�, which aims to control the
randomness of the list scheduling. Let S be the set of ready jobs to
be scheduled and let pmax ¼maxiA Spi, pmin ¼miniA Spi be the
maximum, respectively, the minimum priority values of these
jobs. At each iteration of the list scheduling algorithm the next job
to schedule is chosen uniformly from the jobs with the priorities
belonging to the range ½pmax�aðpmax�pminÞ,pmax�. In this way, by
adjusting coefficient a different behaviors of the list scheduling
can be obtained, i.e. for a¼ 0 we have the list scheduling with
random ties breaking and for a¼ 1 we obtain a list scheduling
with a random priority rule.

The randomized list scheduling algorithm consists in execut-
ing the list scheduling with the random selection rule described
above for a number of times and to retain the best obtained
schedule as solution.

During the experimental phase a drawback of the randomized
list scheduling was revealed. Actually the randomization para-
meter a cannot be chosen unequivocally for different problem
parameters, as number of jobs, stage workloads, etc. The adaptive
randomized list scheduling (ARLS) algorithm is then introduced to
overcome this issue, see Algorithm 4. In this algorithm a pre-
liminary phase is performed, during which the quality of solu-
tions obtained for each randomization parameter is estimated.
Thus, the randomized list scheduling is executed the same
number of times SampCnt for each aAA, where A is the set of
used randomization parameters and the best solution Sa is saved.
Afterwards, in function of the distance of Sa from the worst
solution Smax obtained so far a proportional quota Na from the
total iteration count IterCnt is assigned to parameter a. Thus,
better is the solution Sa more iterations with parameter a are
done in the second phase. When all the solutions are equal the
total iteration count is split into equal parts for each a. Finally, the
randomized list scheduling is executed for each a, Na iterations
and the best obtained solution is returned.

Algorithm 4. Adaptive randomized list scheduling (ARLS).
Require: A - randomization parameters a to use
Require: SampCnt - number of sample runs for each a
Require: IterCnt - number of iterations for the search phase
Ensure Best found solution, best
1:
 Sa ¼ RandomizedListSchedulingða,SampCntÞ, 8aAA

2:
 Smax ¼maxaSa

3:
 Smin ¼minaSa

4:
 if SmaxaSmin thenP

5:
 Pa ¼ ðSmax�SaÞ= a0 ðSmax�Sa0 Þ, 8aAA

6:
 else

7:
 Pa ¼ 1=jAj, 8aAA

8:
 end if

9:
 Na ¼ Pa � IterCnt, 8aAA

10:
 best¼ Smin
11:
 for all aAA do

12:
 sol¼ RandomizedListSchedulingða,NaÞ
13:
 if best4sol then

14:
 best¼sol
15:
 end if

16:
 end for

17:
 return best
The performance of ARLS relies on the good choice of sampling
phase number of iterations SampCnt, on the randomization para-
meters a and on the second phase iterations count IterCnt. The
parameter SampCnt must give statistically reliable estimates of Pa.
In order to control the overall complexity of the ARLS algorithm
the number of second iterations IterCnt shall be carefully chosen.

We must note that there is practically no use of adapting on-
line the randomization parameter a. An ARLS version which is
updating a during the execution was tested, the differences in the
obtained solutions were negligible.
6. Experimental results

The algorithms described earlier were implemented using the
Cþþ language. We have used the constraint propagation frame-
work from ILOG CP solver to implement the GLB2 calculation. The
dichotomization procedure of GLB2dich calculation was implemen-
ted as a goal for CP solver. We shall note that only the constraint
propagation feature of ILOG CP solver was used. The test pro-
grams were executed on an Intel Core2 Duo P8600 system
without explicit parallelization.1

6.1. Instance generation

For testing the performance of the proposed heuristics and
global lower bounds we use a set of 360 graphs from the



Table 1
Relative comparison of GBL1 and GLB2dich. The percentages of instances for which

GLB14GLB2dich , GLB1¼GLB2dich and GLB1oGLB2dich are presented.

HFS type n GLB1 vs. GLB2dich

4 ¼ o

Classic 50 8.58% 23.17% 68.25%

100 11.67% 26.98% 61.36%

No-wait 50 8.48% 22.16% 69.36%

100 11.63% 26.11% 62.26%

Fig. 4. Relative comparison of GLB1 and GLB2dich for each pair (r,m) of parameters.

(a) r ¼ 2
3. (b) r¼1. (c) r¼ 3

2.
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‘‘standard task graph set’’, which can be found in [20]. One half of
the graph instances contain 50 jobs, the other half has 100 jobs.
The graphs have either fully random structure or are composed of
layers of random sizes. Each task processing time is randomly
sampled using uniform, exponential or normal distributions with
either one or two modes.

A HFS instance from such a graph is generated as follows. The
precedence relations between the tasks are used as precedence
relations for second stage operations.

The processing time ci of task i is split into two parts, ai ¼ rci

and bi ¼ ð1�rÞci. Values ai and bi are rounded to the nearest
integers such that relation ci ¼ aiþbi remains valid. The coeffi-
cient r is used to obtain different load balancing between the first
stage and the second stage. Let r¼

P
ai=ð

P
bi=mÞ denote the

desired ratio between the first and second stage workload (i.e.
when r¼1 the processing load is balanced between the stages).
Then the coefficient r can be computed using relation:

r¼ r

rþm

Three ratios r are used in order to examine the performance of
heuristics and of lower bounds for different load balances
between the stages. For each task graph several HFS instances
are generated, so 180 different HFS instances are obtained for
each number of jobs, load ratio and number of the second stage
machines.

6.2. Global lower bounds

In the first experiment we examine the relative performance of
the global lower bounds for each version of HFS problem, the
classical and the no-wait one. The global lower bounds GLB1, GLB2
and GLB2dich are computed for 9720 problem instances generated
as described earlier, with rAf23 ,1,3

2g, mA2, . . . ,10 and n¼50, 100.
First we want to study the improvement brought by the

dichotomization procedure on the GLB2 quality. The instances
for which the lower bound calculated by dichotomization,
GLB2dich, is strictly better than GLB2 are counted. For the classical
HFS the dichotomization improved the lower bound of 1561
problem instances, which represents 16% from the total number.
In the case of no-wait HFS the improvement was observed in
4355 (45%) cases. For instances of 100 jobs the number of
improvements decreases slightly (o1%) when compared to
instances of 50 jobs. In order to sample the quality of these
improvements the deviations 1�GLB2=GLB2dich were calculated
for each instance. In the case of classical HFS the average
deviation is less than 0.1% and for the no-wait HFS less than
0.5%. Although the dichotomization procedure improves the GLB2
bound quality, its relatively high computation cost limits its use.

In a second experiment we study the relative performance of
GLB1 and GLB2dich. The number of instances for which GLB1 is
strictly better, both bounds give the same value and GLB2dich is
strictly better are counted. The results in percentage from the
total number of instances are presented in Table 1. As we can
observe there is no substantial difference in the behavior of
bounds for classic and no-wait HFS, probably because the same
set of instances is equally difficult for GLB2dich in both HFS types.
Another interesting fact is that the quality of GLB1 increases for
instances with more jobs. The result changes for ‘‘layered’’
instances, for which the GLB1 is strictly better than (equal to)
GLB2dich in 13% (27%) of the cases for instances of 50 jobs and 17%
(34%) for instances of 100 jobs no matter the HFS type.

In order to compare the performance of lower bounds function
of load ratio and number of the second stage machines, for each
pair ðr,mÞ we count the number of times each global lower bound
is strictly better than the other bound. Let p1ðr,mÞ and p2ðr,mÞ be
the ratio the first bound is better GLB14GLB2dich and, respec-
tively, the second is better GLB1oGLB2dich expressed in percents
from the total number of instances for each (r,m) and let p1,2ðr,mÞ
be the ratio the bounds are equal. In Fig. 4 p1ðr,mÞ, p1,2ðr,mÞ and
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p2ðr,mÞ are plotted for each pair (r,m). The results for classic HFS
and no-wait HFS are practically the same, consequently only the
no-wait case is plotted.

We observe that for load ratios r¼1 and 3
2 the GLB1 bound is

practically never greater than GLB2dich. For small number of the
second stage machines m the first bound performs better than for
large m, being equal to GLB2dich in approximatively 60% of the
cases for r¼ 3

2 and 40% for r¼1 when m¼2. We suppose that this
is due to the fact that for instances with large first stage work-
loads the one-machine based constraints perform better than the
simple sum of the first stage durations, used in GLB1.

When the second stage workload is dominating, r¼ 2
3, the first

global lower bound performs better than in the previous cases.
The best results of GLB1 are obtained for m¼4 the first bound
being better in more than 50% of the cases. For other values of the
second stage machines, lesser or greater than 4, the performance
of GLB1 decreases. The definition of GLB1 makes it perform better
on instances where the workloads are asymmetrically distributed
between the stages. This can be seen in the results, the overall
performance of GLB1 is lower for r¼1 than for other two load
ratios.

For all load ratios, with the increase of number of machines m

the relative performance of the second global lower bound also
increases, obviously due to the fact that for large values of m the
second stage critical path plays a higher role in the HFS execution.
Fig. 5. Influence of parameters SampCnt and IterCnt on the average deviation of

the ARLS algorithm (the IterCnt parameter is on horizontal axis and different bar

colors represent SampCnt). The deviation is computed for the minimal solution

obtained by the two priority rules. (a) Classical HFS. (b) No-wait HFS. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Table 2
Upper bound on the average deviations established by algorithms ARLS and LS

together with GLBmax.

HFS type 50 100

LS (%) ARLS (%) LS (%) ARLS (%)

Classic 2.98 1.83 1.95 1.21

No-wait 7.83 4.62 7.97 4.94
6.3. List scheduling heuristics

Firstly we shall investigate the influence of sampling phase
iterations count SampCnt and second phase number of iterations
IterCnt on the ARLS performance. The goal is to choose parameters
that produce good solutions of the heuristic when compared to its
complexity. The same set of instances as in previous section
is used.

The randomization parameter a takes five values from the set
AAf0,0:2,0:4,0:6,0:8g. As the fully randomized list scheduling is
outside the scope of this study, value 1 for parameter a is not
used.2 Theoretically, when a¼ 1 the used scheduling priority rule
should not influence the results because the list scheduling is
fully random. A finer division for a is not necessary because the
performance increases insignificantly, but the total number of
iterations raises.

In the sampling phase of ARLS heuristic six values of iterations
count SampCnt have been tested: 50, 100, 150, 200, 250 and 300.
In order to have the same total number of iterations indepen-
dently of SampCnt value the number of second phase iterations
count is IterCnt¼ nbþð300�SampCntÞ � jAj, where 1:5rbr2. Six
values for b are experimented with such that the obtained IterCnt

are equidistantly situated. The execution time, in the worst
observed case, is under 5 s and mainly depends on the graph
edge density.

In order to minimize the influence of the randomness on the
performance study, for each problem instance the ARLS algorithm
is executed 10 times and the averaged result is retained for
comparison. The deviation S=GLBmax�1 of the averaged solution S

from the maximal global lower bound GLBmax ¼ ðGLB1,GLB2dich
Þ is

calculated for each instance.
A preliminary experiment has proved that better solutions are

obtained when the ARLS heuristic is executed two times, first
with priority rule PI and after with PII, keeping the best solution of
each run, even if the total number of iterations is two times
smaller.
2 We have executed the ARLS heuristic also with a¼ 1 but no increase in the

quality of the solutions was observed.
The averaged deviations for each SampCnt and IterCnt are
illustrated in Fig. 5. We observe that when the second phase
iterations count is the lowest IterCnt ¼ n1:5, better results are
obtained for larger sampling phase iterations count. This can be
explained by the fact that the second phase iterations number is
insufficient in order to explore the solution space. Another
interesting fact is that for large second phase iterations count it
is not always better to have larger sampling phases. We suppose
this is due to the fact that parameter Pa (see Algorithm 4) is
reliably enough estimated for smaller SampCnt and it is better to
do more iterations in the second phase. For IterCnt ¼ n2 the
difference in solutions obtained with different SampCnt is insig-
nificant, being under 0.01%. It can be seen that a sampling phase
with SampCnt¼100 gives statistically reliable estimations for the
parameter Pa. Note that, contrary to IterCnt, SampCnt can be
chosen independently of the instance size, based on statistical
convergence considerations. So we use this sample phase



Table 3
Average deviation of the minimal solution found by the ARLS heuristic using both priority rules.

m n

50 100

r¼ 2
3 ð%Þ r¼1 (%) r¼ 3

2 ð%Þ devm ð%Þ r¼ 2
3 ð%Þ r¼1 (%) r¼ 3

2 ð%Þ devm ð%Þ

(a) Classical HFS

2 0.47 3.23 0.24 1.31 0.24 2.16 0.07 0.82

3 0.82 3.41 0.48 1.57 0.47 2.36 0.31 1.05

4 1.17 3.29 0.74 1.73 0.55 2.31 0.78 1.21

5 1.50 2.99 1.54 2.01 0.67 2.16 1.05 1.29

6 1.64 2.72 2.37 2.25 0.77 1.79 1.33 1.30

7 1.63 2.25 3.07 2.32 0.82 1.63 1.80 1.42

8 1.20 1.82 3.17 2.07 0.65 1.26 2.08 1.33

9 0.78 1.29 3.14 1.73 0.53 1.01 2.29 1.28

10 0.45 0.92 3.03 1.46 0.33 0.86 2.50 1.23

devr ð%Þ 1.07 2.44 1.98 1.83 0.56 1.73 1.36 1.21

(b) No-wait HFS

2 2.53 10.18 2.59 5.10 2.80 11.56 3.32 5.89

3 3.14 9.67 2.32 5.04 3.09 10.64 2.72 5.49

4 3.53 8.94 2.78 5.08 3.09 10.07 3.43 5.53

5 3.61 7.75 3.56 4.97 3.21 9.35 3.84 5.47

6 3.69 7.03 4.52 5.08 3.09 8.21 4.21 5.17

7 3.49 6.03 5.28 4.93 2.83 7.13 4.79 4.92

8 2.66 4.97 5.44 4.36 2.34 5.93 5.00 4.42

9 1.86 3.81 5.59 3.75 1.86 4.82 5.24 3.98

10 1.22 2.96 5.69 3.29 1.32 3.96 5.58 3.62

devr ð%Þ 2.86 6.81 4.20 4.62 2.62 7.96 4.24 4.94
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iterations number in the next experiments, n2 is used for second
phase iterations count.

In the next experiment the priority rules are compared. It was
determined that for the classical HFS the PI priority rule dom-
inates in average PII in all the test instances, which can be
explained by the dominance of the multiprocessor scheduling
problem in the classical HFS, for which critical path rules are
better. In the case of no-wait HFS the second priority rule PII

produces better solutions for load ratios r¼ 2
3 and 1 and for a

second stage machines count mr4.
In order to see the improvement of the randomization on the

ordinary list scheduling in Table 2 the quality of solutions
obtained by the ARLS heuristic and the ordinary list scheduling
heuristic are compared. The randomization always improves the
solutions found by the list scheduling, the deviations of solutions
are decreased by ARLS with approximatively 40%.

Table 3 presents the average deviations of the solutions
calculated by the ARLS heuristic in function of work load ratio r,
second stage machines count m and number of jobs n. Also in the
table are illustrated the averaged values of deviations for each m

and r. As we can see on average for the classical HFS the deviation
is lower than 2% and for the no-wait case the deviation is under
5%. The deviations per number of the second stage machines,
devm , tend to decrease for larger values of m. In both HFS types
the hardest instances are those for which the workload is
balanced between the stages, i.e. r¼1, the largest deviations
being obtained for small m. In the case of no-wait HFS, when
m¼2 and r¼1 the deviation is less than 11% for 50 jobs and less
than 12% for 100 jobs. With the increase of the number of the
second stage machines this deviance decreases, being under 4%
for m¼10. A closer examination revealed that the largest devia-
tions are obtained for instances for which the processing times
distributions follow an exponential law. In order to see what is
their influence, the deviations were recalculated without the
exponential processing time instances. It was found that in the
case of no-wait HFS the worst observed deviation falls down from
12% to 8%.
7. Conclusion

In this study two versions of the two-stage hybrid flow shop
problem with second stage precedence constraints and parallel
machines are investigated, the classical and the no-wait one. An
adaptive randomized list scheduling (ARLS) heuristic, together with
two priority rules, is proposed for solving both problem versions.
Our heuristic is made of a constructive part (ARLS) associated to a
global lower bound which allows to obtain provably good solutions.

The practical application of the hybrid flow shop problem occurs
in the scheduling of an algorithm on a parallel computer, where the
memory accesses are independent from task execution. Using this
problem a more fine-grained modeling of an on-line execution of an
algorithm on a parallel computing system can be obtained.

The evaluation of the heuristic is done using randomly
generated problem instances. The ARLS algorithm gives better
schedules for all of the examined cases when compared to the
ordinary list scheduling. The best results are obtained in the case
of the classical HFS problem version, with an average deviation
established by the algorithm under 2% from the optimum. For the
no-wait HFS version that deviation is smaller than 5%. The critical
path based priority rule provides better solutions in average.

The fact that the randomization increases the quality of the list
scheduling solutions motivates us to examine, in a subsequent
work, a more complex probabilistic heuristic, e.g. by introducing a
local search phase in a GRASP-like fashion.

In future works we plan to investigate more general hybrid
flow shop models, with parallel machines on both stages so as to
take into account several memory access channels in a parallel
computer architecture, or, with stochastic job processing times in
order to take into account the incertitude of task durations.
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