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Abstract—We propose a GRASP heuristic for solving the
joint problem of placement and routing of process networks
from the field of compilation for embedded manycore archi-
tectures. The method we propose consists in assigning applica-
tions expressed as dataflow process networks on homogeneous
manycore architectures by taking into account the routing
maximal capacity of the arcs for the underlying Network-
On-Chip. Our experiments illustrate the algorithm ability to
efficiently obtain good quality routable assignments, within an
acceptable computational time, even for large size instances.
Moreover, validation of our approach is also realized on data
coming from an embedded application of video processing.

Keywords-parallel embedded systems, dataflow compilation,
placement, routing, GRASP heuristic

I. INTRODUCTION

Despite the exponential growth of the number of transis-

tors which can be placed on an integrated circuit (according

to Moore’s law), the performance of practical computing

systems does not follow the same growth rate. As such, the

solution consists in designing and using parallel processing

systems and nowadays a new generation of massively multi-

core microprocessors is emerging. The present multi-core

architectures are achieving more performance by the use of

several processing elements (roughly a dozen) and the next

generation of manycore chips will be even more powerful,

containing hundreds if not thousands of cores, connected via

a Network-On-Chip (Noc). As such, we are entering into a

manycore era in which the updated Moore’s law states that

the number of cores on a chip doubles every two years.

However, in order to efficiently exploit the parallelism

and to take full advantage of the computing power these

manycores may provide, their design requires new pro-

gramming and execution paradigms as well as innova-

tive compilation technologies. Programming applications

for manycore systems is a difficult task, since there are

at least three difficulties to overcome: handle limited and

dependent resources (memory, NoC), be able to run correctly

large parallel programs and efficiently exploit the underlying

parallel architectures.

The first issue is already partially solved in the present

embedded manycore like Kalray MPPA platforms [1] or

Tilera due to some kind of hierarchical memory architecture,

with distributed memories close to the processing elements

and a shared on-chip memory for communication with other

clusters and outside world.
Also, for taking advantage of manycores architectures in

terms of computing power, power consumption or devel-

opment cost, one must be able to efficiently parallelize an

application and thus, it demands a “good” decomposition

of the program into tasks. Traditional programming imper-

ative languages (C or Java) are based on a sequential von

Neumann architecture and therefore they are inappropriate

for writing effective parallel programs. Dataflow paradigm

seems to be a good candidate for programming manycore

applications, which satisfy most of the properties stated

before. With first models emerging in the early 1970s,

dataflow languages provide an efficient and simple solution

to express programs, which can be executed on a parallel

architecture, without worrying about data synchronization.
An example of a recent dataflow model and language

is ΣC (e.g. [2]) which provides more expressive power

than Synchronous Dataflow Models (SDF) or Cyclo-static

Dataflow models (CSDF), while allowing to perform a

formal analysis for verifying properties like absence of

deadlock or memory bounded execution.
In dataflow models, an application is described as a static

instantiation graph of concurrent tasks interacting through

unidirectional FIFO channels. Once the application has been

designed and implemented using a dataflow programming

language, it is the role of the compilation chain to make

the connection with the specific execution model for the

embedded manycore target. The compilation process for ΣC

language is organized into four passes:

• Lexical analysis, parsing and code generation. This

first pass, the ΣC front-end, begins with a lexical,

syntactic and semantic analysis of the code, common

to most compilers. Afterwards, preliminary C codes are

generated from ΣC sources. These codes are intended
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either for off-line execution (the instantiation codes of

the agents), either for further refinement, by substitu-

tion (the treatment codes corresponding to treatment

agents).

• Compilation of the parallelism. The purpose of the

second pass, the ΣC middle-end, is to instantiate and

connect the agents, by executing at compile time the

corresponding codes generated by the first pass. The C

code, calling adapted APIs, is compiled and executed

on the workstation for building the data structure rep-

resenting the network of processes and generating the

data for the agent instances.

Once the construction of the application graph is

complete, parallelism reduction techniques by pattern

matching [3] are applied such as the application is

compliant with the abstract specification of the system

resources. During this stage, it is possible to verify the

hierarchical coherence of the agents (for each subgraph

verify that its composition implements correctly its

state machine) and to perform a safe computation of

a deadlock-free lowest bound for the buffers sizes of

the links.

• Resource allocation. The third pass is in charge of

resource allocation (in the larger sense). First, it sup-

ports a dimensioning of communication buffers taking

into account the execution times of the tasks and

the application requirements in terms of bandwidths

(non functional constraints). Next, in order to realize

a connection with the execution model, it constructs

a folded (and thus, finitely representative) unbounded

partial ordering of task occurrences.

This pass is also responsible of placement and routing,

with the objectives of grouping together (under capacity

constraints for each cluster of the architecture) tasks

which communicate the most, mapping these groups

of tasks to the clusters and, finally, computing routing

paths for the data traversing the NoC.

• Runtime generation and link edition. The last pass,

the ΣC back-end, is responsible of generating the final

C code and the runtime tables. Based on the partial

orderings from the third pass, the runtime tables make

the link with the execution model, by setting parameters

of the system such as the configuration parameters of

the NoC or the data structures describing the inter-

task communication buffers. Also, during this stage

and using C back-up compiler tools, link edition and

loadbuild are realized.

As the above description shows, the compilation process

of a dataflow application for a manycore architecture is

becoming rather complex and requires solving a number of

difficult and large-size optimization problems. Nowadays,

the compiler design implies the application of operations

research techniques not only to the so-called back-end (by

solving more classical optimization problems, e.g. buffer

sizing, instruction scheduling) but all along of the compi-

lation process (e.g. process partitioning, quadratic assign-

ment, multi-flow routing), in order to efficiently allocate

and exploit the inter-related resources offered by parallel

architectures.

The optimization problem we consider here, related to

the third pass of compilation, consists in the joint place-

ment and routing of Dataflow Process Networks (DPN)

on a homogeneous clusterized manycore architecture in

which the cores are organized as clusters communicating

through an asynchronous Network-On-Chip. We propose a

GRASP algorithm building solutions of high quality even

for applications of relatively large instances in a reasonable

computation time for our application context.

As shown in the sequel, even if the two sub-problems of

tasks mapping and routing have already been addressed in

the literature, the novelty of our approach consists in treating

together task mapping and routing, and thus, taking into

account the routing when placing the networks of processes,

without any particular assumption on the network (here a

Network-On-Chip) topology.

The rest of this paper is organized as follows. Section

2 gives a formal description of the problem and describes

similar existing approaches. In Section 3, we present in detail

the structure of our GRASP method. Section 4 provides the

results of computational experiments conducted on synthetic

benchmarks as well as on a real relatively complex ΣC

application. Final remarks and some future perspectives are

presented in Section 5.

II. THE JOINT PROBLEM OF PLACEMENT AND ROUTING

A. Problem statement

In this paper, we study the static mapping of tasks from

a DPN onto the network of clusters, such as the total

bandwidth used by the application is minimal and for each

pair of communicating tasks, there exits a routing path

between tasks situated on different clusters.

The clusterized architecture is represented by a directed

graph G = (N,A,R,Ca) with N the set of nodes (clusters)

and A the set of arcs between nodes, corresponding to

the NoC links. Ca : A −→ R describes the bandwidths

between different clusters of the target architecture, with

Ca((ninj)) > 0 the maximal capacity for arc (ni, nj) and

Ca((ninj)) = 0 if nodes (ni, nj) are not connected. R
is the set of resources (essentially memory footprint and

computing core occupancy) we have at our disposal. The

capacities of the nodes are given by a multi-dimensional

array Cn ∈ R
+|R|.

Let DPN = (V,E, S,Q) represent the network of

processes with V the set of vertices (tasks) and E the set

of communication channels. S : V −→ R
+|R|, is a size

function for the tasks, with str being the weight of task t
for resource r. The function Q : E −→ R characterizes the
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communication where qtitj > 0 denotes the weight of arc

(ti, tj) ∈ E and qtitj = 0 if no arc (ti, tj) exists between

ti and tj .

For the sake of simplicity, the remaining of this paper will

be restrained to the case of homogeneous nodes and arcs for

G. Hence we suppose all nodes have the same capacity Cnr

for each resource r ∈ R and all arcs have the same maximal

bandwidth Ca.

Let g : V → N be a mapping of tasks to the nodes. As

such, we are interested in finding an admissible assignment

g of tasks to nodes minimizing the sum of inter-tasks

communications: ∑
(tt′)∈E:g(t) �=g(t′)

qtt′ . (1)

In the context of our present work, an admissible assign-
ment is a mapping of tasks to nodes which satisfies the

capacity constraints:∑
t∈V :g(t)=n

str ≤ Cnr, ∀n ∈ N, ∀r ∈ R, (2)

and furthermore, it assures that there exists a feasible routing

between every two communicating tasks:

{∀(t, t′) ∈ E and g(t) �= g(t′) and qtt′ ≥ 0} : ∃route(t,t’)

(3)

which route respects the maximal capacity Ca of the links

of the network. As such, the last condition verifies if all

the bandwidths can be accommodated across the network G
without exceeding the maximal capacity of the arcs in terms

of bandwidth.

In order to simplify communication protocols, the search

of possible routes will be limited to a single unsplittable

commodity flow using a shortest-path routing strategy.

Since the tasks mapping is equivalent to the Node Capac-

itated Graph Partitioning problem which is NP-hard [4] and

unsplittable flow problem can be restricted to the Directed

Edge Disjoint Paths problem, also NP-hard [5], the joint

problem is straightforwardly NP-hard in the strong sense.

Regarding the size of instances specific to our context of

application, our method has to be able to map networks of

processes with a few thousands of tasks on architectures

having at least a dozen of nodes. An example of a real

application a compilation chain has to treat, which will be

used across this study for an experimental validation, is a

motion target dataflow which has to be placed on a NoC in

the form of a bi-dimensional torus 4× 4.

In order to design a resolution method for the joint map-

ping and routing, an important aspect to decide is for which

step of the development cycle for embedded applications this

algorithm is intended. The beginning of the development of

an embedded application requires a short programmer/target

feedback loop when the programmer is able to obtain a

first working version of the application with a well coarse-

grained structure. Thus, the beginning of the cycle requires

for fast heuristics and can accept solutions of moderate

quality. At the end of the development cycle, since more

human and computing times are invested (e.g. acceptable

compilation times to up of one night), more fine-grained

optimizations are afforded. Hence, at this point of the cycle,

one can accept more computationally intensive algorithms

and more powerful computer systems.

Also, other important factors which have to be taken into

account into a mapping strategy are: the constraints coming

from the platform and the application, the metrics to be

optimized, the information and the assumptions made about

the system, etc.

B. Algorithmic approaches

To the best of our knowledge, the joint problem of

placement and routing of dataflow process networks on

a homogeneous manycore architecture has not been yet

addressed in the literature.

Even if the task mapping was and remains a relatively well

studied problem (e.g. [6], [7]), the routing aspect was almost

always neglected. Moreover, there are only a few approaches

considering applications expressed as dataflow process net-

works and for which the target architecture is a manycore

system. In [8], a simulated annealing algorithm is proposed

for distributing Kahn Process Networks on Multiprocessors

SoCs (MpSoCS) with at most four Processing Elements

(PE) connected with dual shared bus. [9] proposes a parallel

simulated approach for the DPNs mapping on a square torus

architecture. Since this method is quite computationally

demanding (roughly twenty minutes for a 31×31 square grid

of tasks using 6 computing cores), it is more appropriate to

be applied for the end of the development cycle of embedded

applications.

Also, usually, the objective of existing techniques is a

placement for which the tasks are equally distributed to all

the processing elements (e.g.[10], [11]) while for our current

approach, the interest is in minimizing the number of used

clusters.

It is worth mentioning that the method proposed here does

not belong to the family of static mappings for which the

NoC is configured in function of the application in order to

meet tasks requirements while fitting a specific SoC archi-

tecture (e.g. [12], [13], [14]). In [15], a branch-and-bound al-

gorithm is proposed for the mapping of intellectual property

blocks - IP (like CPU or DSP cores, video stream processors,

input/output devices) on an architecture organized as regular

tiles (composed of a processing core and a router), related by

a NoC. The objective is to minimize the total energy spent on

communication, by assuring that no tile can host more than
one IP and having a routing constraint related to bandwidth

usage. At each step, the algorithm assures a minimal and

deadlock-free routing which respects the maximal load for

each link of the NoC by incorporating a list of routing paths

as part of the solution, instead of a single routing path. [14]

230221221



conceives dynamic re-configuration mechanisms to match

the NoC configuration to the communication characteristics

of each use-case. A design methodology, restricted to Æthe-

real NoCs, is introduced for mapping, path selection and

resource reservation in the network, by taking as input use-

cases of the SoC. The objective of the mapping process is

to design the smallest size NoC, with the smallest number

of switches which satisfies the constraints for all use-cases.

Instead, we consider that the manycore specification and in

particular NoC characteristics such maximal bandwidth for

links are rigid and the placement and routing of tasks is

realized afterwards (without worrying about the scheduling)

during the compilation process of an application.

Between the only approaches similar to ours, of which

we are aware of, is [16] treating the problem as a mas-

ter (placement)/slave(routing) couple. As such, the overall

problem is split into two sub-problems, less complex. The

assignment is solved using a semi-greedy algorithm while

the routing paths are computed optimally with a mixed linear

integer programming. However, the sequential resolution can

un-structure the initial problem and the found placement

may not be routable and there can be feasibility issues

for the routing problem downstream as a result of relaxing

some constraints for the upstream problem. The typical

example consists in a placement non routable we cannot

route because the flows between the nodes of the network

exceed the maximal bandwidth capacity for the links Ca.

Other algorithmic aspects to be considered are the prob-

lem complexity and the size of instances we have to deal

with, both factors making the building of a tractable exact

resolution for both mapping and routing difficult and inap-

propriate. As such, we turned our attention to approximate

algorithms and in particular to the GRASP metaheuristic,

which seems a more suited choice to tackle this problem

especially for the beginning of the development cycle of an

application.

III. GRASP FOR THE JOINT PROBLEM OF PLACEMENT

AND ROUTING

Introduced in the nineties by Feo and Resende [17],

GRASP (Greedy Randomized Adaptative Search Procedure)

is a multi-start metaheuristic, each iteration involving two

phases: construction and local search. The construction

phase builds a feasible solution using a greedy randomized

algorithm. During the local phase, the neighborhood of

the current solution is investigated in the search of better

solutions. At the end, the best overall solution is kept as

the result. Alg. 1 illustrates the main blocks of our GRASP

method for finding routable mappings of tasks to clusters.

The input parameters are the set of tasks V , the set of

nodes N , the set of resources R, the maximum number

of iterations to be performed and also the parameter k
used for controlling the amount of randomness (this is the

probabilistic aspect of the construction phase). The mapping

Algorithm 1 GRASP for joint placement and routing

Input: V , N , R, k, MaxIterations
1: gb ← null
2: for i = 1 to MaxIterations do
3: gc ← construction phase(V , N , R, k)
4: g ← local search phase(gc)
5: update best assignment gb with g if needed
6: end for

Output: best assignment gb

gc found by the construction phase is further exploited in

local search phase and optimized. If the resulting mapping

g of this post-optimization is better than the previous best

mapping gb then we update gb. Before explaining in more

details each one of the two stages of our approach, let

us recall the notions of total and relative affinity, initially

introduced in [16] (see also [18] for details).

A. Preliminaries

Let S and T be two disjoint subsets of V .

Definition 1: The affinity of S for T is given by :

α(S, T ) =
∑

(v,w)∈δ(S,T )

qvw.

with δ(S, T ) = {(v, w) : v ∈ S;w ∈ T}. It follows that

α(S, T ) = α(T, S).
Definition 2: The total affinity of S (similarly for T ) is

given by

β(S) = α(S, V \ S).
Definition 3: The relative affinity of S for T is defined

as

γ(S, T ) =
1

2
α(S, T )

(
1

β(S)
+

1

β(T )

)

where
α(S,T )
β(S) represents the contribution to the total affinity

of S of the edges adjacent to S and T .

B. Construction phase

Our greedy constructive method is an adaptation of an

existing algorithm, initially used for partitioning networks of

processes and based on the notion of relative affinity ([16],

[18]). We modified it in order to deal with routing and we

changed the randomization strategy to intensify the diversity

of the solutions.

The main idea of our constructive algorithm is to verify

at each step of the mapping, that the flows between the

assigned tasks can be routed by making use of the previous

computed flows and trying to find feasible paths for the

new or modified flows. At each step of the mapping, the

computation of new routing paths is realized through a

single source shortest-path algorithm on a reduced graph

G′ obtained from the original network G and whose arcs

are weighted with a residual capacity Cra .

Let G′ = (N,A′) be the reduced graph with the same

number of vertices N as G and A′ the set of arcs in G
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weighted with a positive residual capacity. Let F be the

set of flows between tasks and for each flow f ∈ F , s(f),
d(f) and w(f) are respectively the source, the sink (or the

destination) and the demand (the weight) for flow f . The

shortest path for flow f in the graph G′ is denoted sp(f).
Initially, A′ = A and ∀a ∈ A′, Cra = Ca and afterwards, it

is updated as follows:

Cra = Cra −
∑
f∈F

w(f) ∗ χa

with χa =

{
1 if a ∈ sp(f)
0 otherwise.

Let us now redefine the

notions of admissible assignment and admissible fusion (see

[18] for details), which for our approach, verify not only

the respect of capacity resources but also the existence of a

routing.

Let W be the set of vertices not yet assigned to a node.

Definition 4: An assignment of task t to node n is ad-

missible if it satisfies the capacity constraints for node n:

str +
∑

t′∈V \W :g(t′)=n

st′r ≤ Cr, ∀r ∈ R

and there is a feasible routable path for every flow f between

t and all the other tasks t′ ∈ V \W with g(t) �= g(t′) and

(tt′) ∈ E:

{∃sp(f) ∈ G′ : s(f) = t ∧ d(f) = t′ ∧ w(f) = qtt′ > 0}
{∃sp(f) ∈ G′ : s(f) = t′ ∧ d(f) = t ∧ w(f) = qt′t > 0}
Definition 5: A fusion between the nodes n and m is

admissible if:∑
t∈V \W :g(t)=n

str +
∑

t∈V \W :g(t)=m

str ≤ Cr, ∀r ∈ R

and all the flows for tasks belonging to n and m are

reroutable through G′.
After each assignment or fusion, Cra and F are updated

accordingly, by adding or removing flows. The overall

framework of the greedy randomized construction algorithm

is presented in Alg.2. Initially, a partial solution is set as the

first min(|V |, |N |) tasks in lexicographic order assigned to

the N nodes with the condition that this initial mapping

is also routable. Then, the list [rcl] of k best decisions is

constructed in a greedy fashion, by choosing between an

admissible assignment or an admissible fusion, the one with

the highest relative affinity. Once a decision ci is chosen

at random from [rcl], we evaluate its nature (assignment or

fusion) and make the corresponding changes for Cra and

F . If ci is an assignment of task ti to node n, the set W
is updated: W = W \ {ti}, the incoming / outgoing flows

between the task ti and the other tasks already assigned are

computed and added to the set F and the residual capacities

of the arcs of the network are reduced accordingly. If ci is

a merge of two nodes (n∗
1 ∈ N,n∗

2 ∈ N), the necessary

Algorithm 2 GRASP for joint placement and routing: construc-
tion phase

Input: V , N , R, k
1: Initialization of the set of unassigned tasks W = V and update sets

W , F
2: Assign the first min(|V |, |N |) vertices to the |N | nodes and update

W
3: Build the list of k restricted candidate decisions [rcl] made of

admissible assignments (cf. Def.4) and admissible fusions (cf. Def.5)
4: Select at random ci from [rcl]
5: If ci is an assignment (v∗ ∈W,n∗ ∈ N), then update set W . Else,

ci is a fusion (n∗
1 ∈ N,n∗

2 ∈ N), and thus merge nodes n∗
1 and n∗

2 .
6: Update the reduced graph G′ and set of flows F
7: If W = ∅ or there is neither any admissible assignment nor any

admissible fusion, stop. Else, go to Step 3.
Output: Assignment gc(V )

modifications are made such that all vertices from node n∗
1

are transferred to node n∗
2, the flows of the tasks already

assigned are updated for taking into account the fusion and

the residual capacities of the arcs of G′ are also recomputed.

C. Local search phase

Afterwards, the quality of the constructed solution S
for gc, is improved through a local search procedure. The

neighborhood structure is the classical 2-OPT, consisting in

generating a new solution from S by interchanging pairs

of tasks assigned to different nodes. The use of this type

of neighborhood is appropriate under the assumption of a

relative homogeneity for the tasks weights. Also, we are

using a first improving search strategy in which the current

solution is replaced by the first better local solution.In

practice, it has been observed that for many applications,

quite often, both search strategies lead to same final solution,

but with smaller computation times when a first improving

strategy is used [17].

The subtlety of our approach consists in selecting the tasks

to exchange from the set:

EXt = {t ∈ V : (∃n �= g(t) ∈ N : α(t, n)−α(t, g(t)) > 0)}

with α(t, n), the affinity of task t for node n (see [16], [18]).

An exchange of two tasks t and t′ from node g(t) to

node g(t′) and vice versa is admissible only if the capacity

constraints for the associated nodes are respected and the

flows having as source or sink t and/or t′ are still routable.

Since, except for the exchanged tasks, all the others remain

on the same nodes, the computation of the value for the

solution s′ corresponding to a 2-OPT neighborhood can be

realized quickly based on s and the bandwidths of exchanged

tasks. The new value of the solution when moving t to g(t′)
and t′ to g(t) will be:

S′ = S +
∑

g(t)=g(ti)

(qtti − qt′ti) +
∑

g(t′)=g(ti)

(qt′ti − qtti)
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IV. EXPERIMENTAL RESULTS

All the experiments have been carried out on a Linux

workstation, with a 2.40 GHz i5 processor, 8 GB of memory

and Ubuntu 12.04 as operating system.

We have decided to stop our algorithm either when the

maximal number of iterations, equal to max(100, |V |log|V |)
(V is the number of tasks to allocate), or a time limit of 10

minutes are reached.

A. Benchmarks

For testing our GRASP algorithm, we used three sets of

test problems: several grids to be placed on square grids, a

modified version of Johnson instances [19] and a real image

processing application to be compiled using the compilation

chain and placed on a manycore architecture.

The first set of instances consists of examples of undi-

rected DPNs grids, representative in size of our application

context, with unitary weights for tasks and for the communi-

cation channels. Besides, these instances are easy to modify

and we can use them to test different configurations.Table

I shows the grids instances, with column “#Vertices” the

number of vertices to be placed and column “#Nodes” the

number of clusters for a homogeneous tore architecture on

which the vertices have to be placed. The results are giving

for a maximal bandwidth for the links of the different NoCs

set to Ca = 1000. The end column “Sol.” reports the

solutions obtained by the semi-greedy algorithm for tasks

mapping described in [16]. The second set is composed

Table I
GRID INSTANCES

Inst. #Vertices #Nodes Cn Sol.

Grid 4× 4 16 4 4 8
Grid 10× 10 100 16 7 70
Grid 12× 12 144 4 40 31
Grid 18× 18 324 9 40 88
Grid 23× 23 529 16 40 162

of undirected graphs publicly available first used for bipar-

titioning [19], with different topologies and a number of

vertices varying between 124 and 1000. We consider unitary

weights for the channels between each communicating pair

of vertices as well as unitary mono-dimensional weights for

the vertices. The initial instances were adapted to be placed

on a torus 2D of 4x4 nodes with maximal capacity on the

arcs Ca = 1000.

Motion target: a real-case application

The real case we considered here for testing our method

is a moving targets tracking application, with input a se-

quence of related video frames. Sequential video frames

are analyzed and the movement of targets between the

frames is outputted. Figure IV-A [16] gives an overview

of the main components of the ΣC dataflow graph for this

motion target application. The network, corresponding to an

oriented graph, is described from left to right. The tasks io
belonging to a special class of ΣC agents provide a way

to handle the input/output. The left ones are in charge of

reading two consecutive frames, of height H and width W
and the right one is displaying the current image with the

targets identified by surrounding rectangles. The next tasks

S are data distribution agents of type Split which take as

input the current, and respectively, the previous image, and

divide them into NBS strips (into a round robin fashion).

Production of these system agents is given by the NBS

parameter and the application size directly depends on this

level of granularity, the further treatments being realized for

each strip. As such, the following tasks Δ are computing

the absolute difference for pixels by strips which is then

used by σ to compute the standard deviation by macro-block

and select the minimum for each strip. The outputs of Δ
agents serve also as inputs for the t agents to construct a

binary version of each strip which is further employed by

the c tasks to detect connected components by strip. First

m vertex representing a subgraph (including a join system

agent and a user agent defining a median filter) compute

the minimum deviation between all strips and broadcast

the result to all strips. The second m vertex is another

subgraph for merging together the bounding boxes found

for each strip. The empty vertex is the Dup agent, used

to duplicate data over all output channels. Modifying the

number of strips in which the images of the video sequence

are divided induces a modification of the number of tasks

to be placed. There are three kinds of resources for the

node capacity: cardinality, computing core occupancy and

memory footprint. The application has to be placed on a

bi-dimensional torus 4× 4.

B. Results

Our GRASP algorithm was tested for different configu-

rations, with k ∈ {2, 3, 4} (see Alg. 2, line 3), total versus

relative affinity during construction, best improvement and

first improvement for local search phase, etc.

Since we prioritize the minimization of the bandwidths

(cf. Eq.1) we guarantee just that this mapping is routable.

As such, we are not guaranteeing an optimal routing and

instead, we are analyzing the difference, for an obtained

placement, between the routing our algorithm is using and an

ideal one, (using a shortest-path strategy), by measuring the

average for all flows f ∈ F of fraction: lb = length(sp(f))
lengthr

with lengthr being the shortest path in the NoC between

s(f) and d(f).
Table II shows some of the placement results obtained

for grids instances when the number of iterations is equal to

max(100, |V |log|V |), the notion of relative affinity is used,

the maximal bandwidth Ca = 1000 and the number of

selections k ∈ {2, 3, 4}. The column “GR” represents the

results of the construction part while column “PS” presents

the complete results with post-optimization, when 2OPT
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Figure 1. Motion target application.

neighborhood is used. As shown, the local search is useful

and better results are obtained for k = 2 and k = 3.

Overall the quality of solutions is comparable with the one

found by the algorithm from [16]. GRASP solutions have

an average deviation from the solutions found by the semi-

greedy method in [16] of ≈5% for k = 2 and less than

10% for k = 3 and k = 4, with the advantage that we also

ensure the routability. When the capacity of arcs Ca is large

enough, our method is able to accommodate the flows via

the shortest paths and lb = 1 in all cases. Instead, when

limiting more the capacity of the links, the average of lb
tends to increase to 1.05. For the second set, as shown in

Table II
COMPUTATIONAL RESULTS OF GRASP METHOD FOR GRID PROBLEMS

k=2 k=3 k=4
Name GR PS GR PS GR PS

Grid4x4.inst 11 10 12 11 13 10
Grid10x10.inst 73 69 75 69 76 69
Grid12x12.inst 34 30 34 30 36 33
Grid18x18.inst 92 88 91 91 99 91
Grid23x23.inst 174 173 184 177 190 182

table III the best results of our GRASP were obtained with

the notion of relative affinity, when k = 2 and k = 3 with

solutions of better quality than those found by [16], (reported

in columns “Greedy”) for 18 and respectively 17 instances

(out of a total of 25). Also, the results are definitely better

for k = 2 instead of k = 4 (for 20 out of 25 instances).

For the target motion application, Table IV shows the

results obtained for a number of processes varying between

60 and 300 (column “|V |”) in function of the number

of strips (column “ST”). These results, obtained with the

GRASP approach for k ∈ {2, 3, 4}, using the notion of total

affinity, are compared with those obtained by the method

currently implemented in the compilation chain (column

“[16]”) for the placement of the application on a 2D torus

4 × 4 with Ca = 10000000. The GRASP method provides

better results in almost all cases. It should however be noted

that when relative affinity is used instead, the results of the

GRASP are of a lower quality. Since the capacity of the

Table III
COMPUTATIONAL RESULTS OF GRASP METHOD FOR JOHNSON

INSTANCES COMPARED WITH GREEDY METHOD FROM [16]

Name |V | Cn
GRASP

[16]
k=2 k=3 k=4

G.sub.500 500 33 602 605 603 597
G1000.0025 1000 63 331 331 339 336
G1000.005 1000 63 1262 1259 1266 1248
G1000.01 1000 63 3333 3335 3335 3376
G1000.02 1000 63 7632 7631 7654 7676
G124.02 124 8 53 54 53 52
G124.04 124 8 183 183 183 187
G124.08 124 8 446 445 445 446
G124.16 124 8 1025 1025 1025 1029
G250.01 250 16 105 106 106 103
G250.02 250 16 325 327 327 330
G250.04 250 16 870 874 877 884
G250.08 250 16 1860 1865 1872 1881

G500.005 500 33 173 172 175 167
G500.01 500 33 624 627 627 637
G500.02 500 33 1543 1543 1550 1562
G500.04 500 33 3893 3909 3927 3922

U1000.05 1000 63 99 110 125 117
U1000.10 1000 63 467 469 518 514
U1000.20 1000 63 1642 1675 1780 1700
U1000.40 1000 63 5267 5096 5318 5308
U500.05 500 33 96 94 98 87
U500.10 500 33 335 371 358 353
U500.20 500 33 1132 1118 1144 1188
U500.40 500 33 3667 3653 3625 3610

network is large enough with regard to the flows to be routed,

the bound lb = 1 for all instances, meaning that the routes

found are following shortest paths.

The same instances were used for placing the target

motion application on the same homogeneous NoC but this

time with a maximal bandwidth for each arc Ca = 100000.

While none of the placements found by the method from

[16] is routable afterwards, the current method is finding

placements which are also routable, with an average of 1.17

for lb.

V. CONCLUSION AND PERSPECTIVES

This paper addresses the joint placement and routing

of networks of processes, arising in dataflow compilation

for embedded manycore systems. The proposed GRASP
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Table IV
COMPUTATIONAL RESULTS FOR TARGET MOTION APPLICATION

COMPARED WITH GREEDY METHOD FROM [16]

Name ST |V | GRASP
[16]

k=2 k=3 k=4
MD1.in 8 67 538206 538206 538206 538206
MD2.in 10 81 492530 492530 492530 492536
MD3.in 15 116 492934 492934 492934 492944
MD4.in 20 151 511701 511701 541620 496353
MD5.in 30 221 525268 525269 515030 535525
MD6.in 40 291 542059 541661 526507 587142

algorithm can solve, within an acceptable computation time

(a dozen of minutes) and with a good solution quality,

problems of relative large size (a few thousands of tasks on

a dozen of nodes). As such, it could be used as an alternative

to other tasks placement methods, at the beginning of the

development cycle for embedded applications when the

routing aspect is to be taken into account (for example

several applications to be placed on the same manycore

platform or complex applications with a high demand in

computational power).

In the future, we plan to investigate several directions.

The first one is to design a more efficient implementation

of our local search, by investigating the effect of other

neighborhoods (e.g. cyclic exchanges) which could provide

solutions of better quality. A second direction could consist

in improving the routing paths, by adding latency constraints

for each pair of communicating tasks or by verifying that all

the bandwidths between different clusters are accommodated

via shortest-paths. Another perspective consists in extending

our algorithm to cope with stochastic tasks weights which,

because of their partial dependence on computing kernels

execution times, are random variables.
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