
Towards practical program execution over fully
homomorphic encryption schemes

Simon Fau∗, Renaud Sirdey∗, Caroline Fontaine†, Carlos Aguilar-Melchor‡ and Guy Gogniat§

∗CEA, LIST, France

Email: simon.fau@cea.fr,renaud.sirdey@cea.fr
†Lab-STICC, CNRS and Télécom Bretagne

Université Européenne de Bretagne, France

Email: caroline.fontaine@telecom-bretagne.eu
‡XLIM, Université de Limoges, France

Email: carlos.aguilar@xlim.fr
§Lab-STICC, Université de Bretagne Sud, France

Email: guy.gogniat@univ-ubs.fr

Abstract—This paper intends to provide a first assessment of
the practicality of using Fully Homomorphic Encryption (FHE) to
perform real calculations, in terms of software engineering as well
as performances. We present a prototype of a compilation and ex-
ecution infrastructure targeting any FHE scheme. The paper also
provides some preliminary experimental results obtained with our
implementation of the Brakerski-Gentry-Vaikuntanathan (BGV)
scheme introduced in [6], which is one of the most promising
FHE schemes with respect to practicality.

I. INTRODUCTION

Since the introduction of the notion of Privacy Homo-
morphism by Rivest et al. [20] in the late seventies, the
design of efficient and secure encryption schemes allowing
to perform general computations in the encrypted domain has
been one of the holy grails of the cryptographic community,
with applications in many domains. Despite numerous partial
answers and unsuccessful attempts (see [10] for a survey), the
problem of designing such an obviously useful primitive has
remained open until the theoretical breakthrough of C. Gentry
[12], [11] in the late 2000s, with the construction of the first
Fully Homomorphic Encryption (FHE) scheme.

Interest in FHE schemes has grown in the past few years
along with the widespread adoption of the cloud computing
model for more and more critical applications. Indeed, when
end users want to preserve the privacy of the data they out-
source, they need to encrypt it using a cryptographic scheme,
losing in the process the ability to do any other thing with
the said data than simply retrieving the whole. In such cases,
the possibility to perform computation directly on encrypted
data seems like a great solution. As a straightforward example,
an end user might want to preserve the confidentiality of his
e-mails while still being able to set up filters or to perform
searches. This leads to a need for encryption techniques
that must be compliant with the storage and processing of
outsourced encrypted data in the cloud, private information
retrieval, (private) search on or analysis of encrypted data, etc.

Before going deeper into the subject, it is important to
notice that all FHE schemes are (by necessity) grounded in

probabilistic encryption schemes which are traditionally asym-
metric and usually operate at the bit level. More formally, such
a scheme is specified by two functions encpubk : Z2 −→ Ω
and decprivk : Ω −→ Z2, where Ω is a large cardinality
set (e.g. Z

n
q in [6]) thereby ensuring that each of the (two)

possible plaintexts are associated to many distinct ciphertexts.
The homomorphic part of the cryptosystem then requires
the specification of two additional functions working in the
encrypted domain, ⊕c : Ω×Ω −→ Ω and ⊗c : Ω×Ω −→ Ω,
such that given m1 ∈ Z2 and m2 ∈ Z2 we have

decprivk(encpubk(m1)⊕c encpubk(m2)) = m1 ⊕m2

and

decprivk(encpubk(m1)⊗c encpubk(m2)) = m1 ⊗m2,

where ⊕ and ⊗ respectively denote the xor and the and
operator. Of course, being able to decrypt after one operation
does not imply the ability to do so after an arbitrary number
of operations has been performed. Hence, it is more generally
required that for any polynomial p⊕;⊗ : Z

n
2 −→ Z2 the

cryptosystem has the property that the associated polynomial
p⊕c;⊗c

: Ωn −→ Ω is such that

p⊕;⊗(m1, . . . ,mn) = decprivk(p⊕c;⊗c
(encpubk(m1), . . .)).

This property is quite powerful as such a cryptosystem al-
lows to transform any program with bounded input into an
equivalent program computing in the encrypted domain (by
transforming the bounded input program into a Boolean circuit
and replacing the ⊕ and ⊗ gates by ⊕c and ⊕c operations).

The theoretical efficiency of an FHE scheme is measured
by its per (bit level) operation computational overhead in terms
of a security parameter, usually denoted λ (the cryptosystem
being dimensioned such that the best known attack requires an
order of magnitude of 2λ operations). Although theoretically
efficient, Gentry’s initial construction (and most of its siblings)
is impractical as its overhead is a high degree polynomial of λ.
Having said that, the theoretical efficiency of FHE schemes has
tremendously progressed over the last few years, with a lot of

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.48

293

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.48

284

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.48

284

contributions introducing new techniques [2], [7]. In 2011, the
first (semi) linear [6] and polylog [15] overhead systems were
presented, with a “leveled” FHE scheme where the number
of homomorphic operations is limited, but the limit can be
fixed (as large as required) and the system be parameterized
accordingly (in a trade-off with efficiency).

At present, few implementations of fully homomorphic
encryption schemes have been realized. In [13] an imple-
mentation of Gentry’s breakthrough scheme, which was fairly
impractical, is described. Two implementations of the simple
but quite impractical FHE scheme over the integers of [23]
have been realized: [9], [8], the latter focusing on evaluating
AES homomorphically. In [14], Gentry et al. describe an
optimized version of the BGV scheme for the AES circuit
as well. Lately, Boneh et al. [3] present their own imple-
mentation of [5] for private database queries using homo-
morphic encryption. Finally, in [4] Bos et al. propose a
new FHE scheme based on [22] with improved security and
give some implementation results with practical parameters.
We also want to mention the open source implementations
HElib (https://github.com/shaih/HElib) of [6] and HCRYPT
(www.hcrypt.com) of [21]. In a previous article [1], we used
HCRYPT in our framework, in addition to our own imple-
mentation of the vectorial variant of BGV, but the parameters
were trivial with respect to security. For the results of this
paper, we chose to use the polynomial variant of the BGV
scheme as it seems to be the most promising performance-
wise, and it allows us to use more realistic security parameters.
The interest of our framework is its genericity: we can use any
FHE scheme to perform computations in the encrypted domain
(modulo the code of the basic cryptographic operations of an
FHE scheme). Hence, a developper would be able to interface
his code with an FHE scheme with minimal integration. In this
spirit, we intend to use the recent open source library HElib
in our framework in the future, although it was not available
at the time of testing.

This paper focuses mainly on the software engineering
aspects of using FHE schemes in concrete applications. In
particular, we focus on how to express algorithms seamlessly,
regardless on whether they are executed in the plain (during
testing) or in the encrypted domain (during operation). We
also show how all classical integer manipulation operators
(arithmetic, logical, bitshift, comparison, etc.) can be realized
hermetically in the encrypted domain. More importantly, we
also demonstrate how data dependent control-flow can be per-
formed (at least to a non trivial extent) over such a system, in
particular with respect to the conditional assignment operator
as well as array assignment and dereferencing using encrypted
indices, thus paving the way for a level of expressiveness that
suits a wide spectrum of algorithms.

The paper then attempts to provide a first assessment of
the practical value of the current generation of FHE schemes.
In particular, we provide some characteristics (most notably
the multiplicative depth which turns out to be an important
parameter when performing homomorphic calculations, in par-
ticular with leveled schemes) as well as experimental results
for a number of elementary but real algorithms (discriminant
calculation, array summation, bubble sort, etc.) obtained using
both a public implementation (by Perl et al. [17]) of the
(fairly impractical) Smart & Vercauteren cryptosystem [21]

as well as our implementation of two flavours of the (more
practical) leveled cryptosystem BGV. Although our experi-
mental results with the BGV system have been obtained on
small computations, this work provides an analysis of the
algorithmic structure of that system in particular with respect
to its performance hot spots and on ways to mitigate them.

II. OVERVIEW OF THE BGV CRYPTOSYSTEM

BGV is an asymmetric encryption scheme that encrypts
bits. Like most (somewhat) FHE schemes, it is based on lat-
tices. There are two versions of the cryptosystem: one dealing
with integer vectors (the security of which is linked with
the hardness of the decisional LWE (Learning With Errors)
problem [18]) and the other one with integer polynomials (the
security of which is linked with the hardness of the decisional
R-LWE (Ring-Learning With Errors) problem [16]). In a few
words, the decisional LWE (resp. R-LWE) problem consists
of distinguishing between a distribution of (ai, bi) sampled
uniformly in Z

n
q × Zq (resp. in the ring A = Z

n
q /F (X))

and a distribution of (ai, < ai, s > +ei), where ai and s
are sampled uniformly from Z

n
q (resp. An

q) and ei is sampled
according to a Gaussian distribution. For more precisions on
the (R)-LWE problem, we refer the reader to [19]. In the
sequel, we will focus on the polynomial version of the BGV
encryption scheme, which seems more promising in terms of
performances.

We consider the polynomial ring A = Z[X]/F (X) where
F (X) is a cyclotomic polynomial of degree d = 2k and a
chain of odd moduli q1 < ... < qL and their corresponding
subrings Aqi = A/qiA of polynomials of A with integers
coefficients into the range]−qi/2, qi/2]. In practice, elements
in Aqi will be polynomials represented by the d-vector of their
coefficients.

Basic encryption functions

The private key Priv is sampled in A. A public key Pub
consists in the private key masked by a noise component:
Pub = aPriv + 2e ∈ A

N
qL , where N = O(log qL), a ∈ A

N
qL

and the noise e is sampled from a “discrete” Gaussian
distribution over AN (“discrete” meaning here that we sample
from a Gaussian distribution and round to the nearest integer).
Here follows a set of black box descriptions of the main
functions associated with the encryption scheme. We have
decided not to include the exact algorithms to avoid drowning
the important issues in technical descriptions. If interested,
the reader can refer to [6],[14] for a precise algorithmic
description.

Encrypt(Plaintext m, PublicKey Pub): Ciphertext c

The integers we manipulate need to be encrypted one
bit at a time. For m ∈ {0, 1}, the resulting ciphertext c is
a pair of two elements in AqL derived from the plaintext
m, the public key Pub and a random seed (since it is a
probabilistic scheme). In the following, a ciphertext can be
transformed into a pair of two elements in any subring Aqi .
In our implementation, each ciphertext carries its level, i.e.
the information that indicates in which subring it lies.

294285285

Decrypt(Ciphertext c, PrivateKey Priv): Plaintext m

The decryption function is a simple dot product between
the ciphertext c ∈ Aqi and the private key followed by a
modular reduction into the range] − qi/2, qi/2] and finally
a parity test to retrieve the plaintext m. As we will see in
the following, the noise component of the ciphertexts can
grow during the homomorphic operations. For the decryption
to be correct, the noise must remain under a certain level.
That is why we need to introduce the following operations,
whose purpose is to reduce the noise of the ciphertexts after
homomorphic operations.

Level shifting operations

Rescale(Cipertext c): Ciphertext c′

The function transforms the ciphertext c ∈ A
2
qi into a

ciphertext c′ ∈ A
2
qi−1

. The resulting ciphertext has a reduced
noise.

SwitchKey(Augmented Cipertext c): Ciphertext c′

The tensored product of two ciphertexts c1 ⊗ c2 results
in an “augmented ciphertext” c ∈ A

3
qi . To retrieve a regular

ciphertext in A
2
qi , we essentially multiply c by a public matrix

(a different one for each level 1 < i < L). Then we call the
Rescale function to get c′ ∈ A

2
qi−1

(with low noise).

Homomorphic operations

Add(Ciphertext c1, Ciphertext c2): Ciphertext csum

For two ciphertexts c1, c2 where c1 ∈ A
2
qi1

and c2 ∈ A
2
qi2

,

we follow these steps:

if i1 �= i2 (for example i1 < i2) then
do c′2 ← Rescale(c2) i2 − i1 times; (at this
point we have c1, c2 at the same level i1)

end
do csum ← c1 + c′2; (simply by adding the coefficients
of the polynomials modulo qi1)

The resulting ciphertext has a noise component equal to
the sum of the noise components of the input ciphertexts.

Mul(Ciphertext c1, Ciphertext c2): Ciphertext cmul

For two ciphertexts c1 ∈ A
2
qi1

and c2 ∈ A
2
qi2

, we follow

the steps:

if i1 �= i2 (for example i1 < i2) then
call c′2 ← Rescale(c2) i2 − i1 times; (at this
point we have c1, c2 at the same level i1)

end
do c3 ← c1 ⊗ c′2; (c3 ∈ A

3
qi1

)
do cmul ← SwitchKey(c3); (cmul ∈ A

2
qi1−1

)

The tensored product applied on c1 and c2 consists in
adding and multiplying polynomials of Aqi1

, which can be
very expensive as we will see.
The noise component of the resulting ciphertext is
approximately the product of the noise components of
the input ciphertexts.

Parameters

The size of the ciphertexts and therefore the cost of
additions and multiplications on those ciphertexts, depends
on the size of the {qi}i and on the size of the ring A (i.e.
the size of d or n). To give an idea of the cost of these
operations, we want to stress that each bit is encrypted by
a pair of polynomials that can be of degree d > 10000 and
have coefficients of size > 200 bits. For security and noise
management reasons, these parameters grow as the number of
Mul increases (as shown in [6]). More precisely, the key value
to dimension the cryptosystem is the multiplicative depth.1

We can also already point out that the order in which
we perform the homomorphic operations may have an impact
on the number of times we have to call the Rescale and
SwitchKey functions, therefore on the number of levels
(multiplicative depth) we need.

III. MANIPULATING INTEGERS IN THE ENCRYPTED

DOMAIN

As already stated in the introduction, an FHE scheme
allows us to evaluate any polynomial from Z

n
2 to Z2 or,

equivalently, any Boolean circuit. Recall that a Boolean circuit
consists in a directed acyclic graph G = (V,A) whose vertices
are either inputs, outputs or operators (and or xor) and whose
edges represent data dependencies. In higher-level program-
ming terms, this restricts us to programs or algorithms having
bounded input as well as a control flow that is independent
of encrypted data. In particular, this excludes (encrypted)
data-dependant if-then-else statements as well as loop
termination criteria.

At first, this may seem highly restrictive. However, control
depending on encrypted data can still be performed to some
extent, as we shall now see.

Let us first state that most of the classical integer ma-
nipulation operators can be implemented using the and and
xor operators available with the FHE scheme. Additions and
multiplications can be implemented following textbook recipes
for n-bit adders and multipliers (although choosing the most
appropriate design for execution over an FHE scheme is not
so straightforward, since an and will have a far greater cost
than a xor gate). Negation (minus) can be implemented using
the textbook trick of 2-complementing: xoring all “crypto-
bits”—cbits in the sequel—with an encryption of 1, in order to
complement them, and adding an encryption of 1 (with carry
propagation) to the result. This allows to implement an n-
bit subtraction operator using an n-bit adder. It is then also
possible to perform comparisons hermetically in the encrypted
domain by subtracting the two operands to be compared and
keeping the (encrypted) sign bit. The (Boolean) not operator
can be obtained by xoring the least significant bit with an
encryption of 1.

Now that these classical operators are available, we can
go back to the data-dependant control issue. Let us consider a
selection operator s : Z2 × Z× Z −→ Z such that

select(c, a, b) =

{
a if c = 1

b otherwise.

1In a Boolean circuit, the multiplicative depth is defined as the maximal
number of multiplication gates on any path.

295286286

Such an operator can then straightforwardly be rewritten as
follows

select(c, a, b) = ca+ (1− c)b, (1)

Provided the implementations of addition, multiplication
and negation mentioned earlier in this section, Eq. (1) trans-
lates as

select(c, a, b) = ca xor (not c)b.

As this construction allows to perform a conditional as-
signment operator, it enables the implementation of a wide
range of algorithms. As an example, consider the following
simple (although quite demonstrative) example of a bubble
sort algorithm which may be expressed as follows in C-style
programming languages:

void bsort(int *arr,int n)
{
for(int i=0;i<n-1;i++)
{
for(int j=1;j<n-i;j++)
if(arr[j-1]>arr[j])
{
int t=arr[j-1];
arr[j-1]=arr[j];
arr[j]=t;
}
}

}

Using the selection operator of Eq. (1), this algorithm can
be rewritten in a suitable fashion for execution over an FHE
scheme, that is, without requiring any access to the value of
the test arr[j-1]>arr[j]:

void bsort(int *arr,int n)
{
for(int i=0;i<n-1;i++)
{
for(int j=1;j<n-i;j++)
{
int gt=arr[j-1]>arr[j];
int t=select(gt,arr[j-1],arr[j]);
arr[j-1]=select(gt,arr[j],arr[j-1]);
arr[j]=t;
}

}
}

Still, it should be emphasized that, expressed as above, the
bubble sort algorithm always achieves its worst-case O(n2)
complexity: this is a price to be paid unless one accepts leaking
information about the sorted data.

It turns out that array dereferencing and assignment with
encrypted indices is also possible. Indeed,

t[i] =

n∑
j=1

δ(i, j)× t[j], (2)

with δ(i, j) = 1 if i = j and 0 otherwise. And, array
assignment (t[i] = v) can be done by performing

t[j] = δ(i, j)× v ⊕ (1− δ(i, j))× t[j], ∀j. (3)

Of course, both operations are done in O(n) rather than O(1)
in the clear index case. It should also be emphasized that, as
a result of an assigment, all the array entries change although
all but one of them decrypts to the same value as before the
assigment. Again, this is a price to pay for index privacy.

Some of the above operators involve inserting encryptions
of 0 or creating multiple copies of certain cbit such as the
sign cbit of a difference. Note that, due to the probabilistic
nature of the FHE scheme underlying the calculation, the
cryptocomputer loses track of these values as soon as they are
involved in a further operation. For example, adding (xoring)
a cbit, say c0, known to be an encryption of 1 (because
the encryption has been performed by the cryptocomputer
as part of the data it injects in the calculation) to another
cbit of unknown value necessarily leads, by construction of
the cryptosystem, to a result which has nothing to do with
c0 and, thus, which does not allow to (practically) infer any
information about the value of the cbit of unknown value.

We shall now see how all these can be put together in order
to obtain a full solution from a software engineering point of
view.

IV. EXPRESSING HIGH LEVEL ALGORITHMS

Having defined integer manipulation operators, we are
now in theory ready to express many high level algorithms
in a natural fashion. This can easily be done using the
operator overloading features of object-oriented programming
languages such as C++, for example via a CryptoBit class
provided with + and * operators and by using it to build a
CryptoInt class provided with the operators specified in
the previous section.

However, from a software engineering point of view, it is
desirable to be able to do more and in particular to be able
from a single code to perform the following tasks:

1) Test and debug of an algorithm in the clear domain
(either at the integer level or at the bit level).

2) Characterize an algorithm to obtain dimensioning
parameters for the underlying FHE scheme (e.g., the
multiplicative depth of the algorithm) and predict
performances.

3) Execute literally an algorithm in the encrypted do-
main.

4) Generate compilation data (e.g., the Boolean circuit
topology) for further optimizations of the calculation
and later executions on an ad hoc, non literal, execu-
tion support.

Again, this can be achieved by using the type parameterization
feature of object-programming languages (such as the so-
called templates provided in the C++ language) by creating
an integer class parameterized by both a bit type and a
size. The bit type representing either clear bits (in which case
the operators + and * are trivial), instrumented clear bits (see
ClearBit below) or crypto bits (in which case the + and *
operators are implemented with respect to the underlying FHE

296287287

scheme). As an example, in this framework, the bubble sort
code sample of the previous section simply becomes

template<typename integer>
void bsort(integer *arr,int n)
{
for(int i=0;i<n-1;i++)
{
for(int j=1;j<n-i;j++)
{
integer gt=arr[j-1]>arr[j];
integer t=select(gt,arr[j-1],arr[j]);
arr[j-1]=select(gt,arr[j],arr[j-1]);
arr[j]=t;
}

}
}

and this unique code is either invoked as

bsort<Integer<ClearBit,8> >(arr,n);

for execution in the clear in order to (e.g.) sort an array (of
public size) of 8-bits integers or as

bsort<Integer<CryptoBit,8> >(arr,n);

in order to do the same thing in the encrypted domain (of
course in that case arr contains 8-bits integers encrypted at
the bit level with the underlying FHE scheme).

Since, as already emphasized, we are dealing only with
programs with a static control structure, any execution in
the clear domain allows to infer the relevant characteristics
of an algorithm. For example, ClearBit objects can be
instrumented to track the depth1 and multiplicative depth of
each bit involved in the calculation. Straightforwardly, the
depth of the result of either the xoring or the anding of
two bits of depth d1 and d2 is 1 + max(d1, d2) and the
multiplicative depth of the result of the xoring (respectively
the anding) of two bits of multiplicative depth d′1 and d′2
is max(d′1, d

′
2) (respectively 1+max(d′1, d

′
2)). The maximum

depth and multiplicative depth can be tracked along an initial
clear domain execution so as to dimension the number of
levels of a BGV-style cryptosystem for later executions in the
encrypted domain.

In addition, the ClearBit objects can be instrumented
in order to explicitly build the acyclic directed graph rep-
resenting the Boolean circuit underlying the algorithm. This
is a very convenient representation at least for two reasons.
First it reveals a high degree of parallelism, as the so-called
equivalence classes with respect to a topological ordering of
the graph vertices reveal (potentially) large sets of operators
which can be performed in parallel. This is crucial in order to
mitigate the performance hit of using homomorphic encryp-
tion. Second, this representation allows to perform fine grain
optimized scheduling of the calculations in order to maximize
the efficiency of certain mechanisms such as the depth caching
technique discussed in the next section.

1By depth of a bit, we mean, similarly to the circuit depth, the length of
the longest path from the circuit inputs to the operator that computes the said
bit.

V. SOME PRELIMINARY EXPERIMENTAL RESULTS

We have developed a prototype of the compilation and
execution infrastructure sketched in the previous section and
(seamlessly) interfaced it with several fully homomorphic
cryptosystem implementations: two implementations of the
polynomial and vectorial flavors of the Brakerski-Gentry-
Vaikuntanathan cryptosystem written by the authors and a
public domain implementation of the Smart-Vercauteren one
[17].

Our prototype supports all the functions that have been
presented in Sect. IV, inclunding Boolean circuit generation
and (possibly) parallel execution.

Table I (from [1]) provides characterization data for a
number of elementary algorithms obtained using instrumented
clear domain bit-level executions. For each algorithm, we
provide the number of bit-level additions (xors), the number
of bit-level multiplications (ands), the depth, the multiplicative
depth as well as the average number of operations per topo-
logical equivalence classes of the underlying Boolean circuit
(a number which gives an idea of the amount of circuit-level
parallelism).

b2 − 4ac (8 bits) b2 − 4ac (16 bits)

add 332 1188

mul 302 1126

depth 43 83

× depth 16 32

av. // 14.74 27.88
∑10

i=1 t[i] (8 bits)
∑10

i=1 t[i] (16 bits)

add 207 423

mul 135 279

depth 24 48

× depth 8 16

av. // 6.75 14.62

b. sort (10× 4 bits) b. sort (10× 8 bits)

add 1620 3240

mul 1350 2790

depth 214 350

× depth 68 136

av. // 13.88 17.23

FFT (256× 32 bits)

add 7291592

mul 5296128

depth 674

× depth 166

av. // 18676.10

TABLE I. CHARACTERIZATION OF A FEW ELEMENTARY ALGORITHMS.

Parallelism is handled in two (so far exclusive) different
ways, either internally to the cryptosystem or externally at the
Boolean circuit level.

Internal parallelism in handled via an OpenMP paral-
lel for pragma in the outer loop of the matrix product in
SwitchKey (which as already emphasized is the main hot
point, performance-wise). This parallelization strategy results
in further speedups of around 41% on an average dual core
laptop and seems to be the optimal strategy for this kind of
machines.

Table II provides experimental results obtained on a laptop
with a 2 GHz Intel dual core processor, with or without the

297288288

aforementioned parallel for. The execution time (“CPU”), the
parallel for speedup and the security level (λ) are given.

∑10
i=1 t[i] (4 bits) threshold (4 bits)

CPU seq. 54.9 s 193.4 s

CPU // 36.3 s 140.2 s

speedup 33.9% 27.5%

λ 40 40
∑10

i=1 t[i] (4 bits) b2 − 4ac (4 bits)

CPU seq. 77.6 s 158.9 s

CPU // 51.2 s 107.5 s

speedup 34% 32.3%

λ 80 40

TABLE II. EXECUTION TIMES FOR A NUMBER OF ELEMENTARY

ALGORITHMS WITH THE POLYNOMIAL BGV.

These results show that we can achieve homomorphic
computation with a non-trivial level of security for circuits of
small multiplicative depth, although the overhead makes it still
impractical. As we have said earlier, the ciphertexts are vectors
of thousands of integers and the experimentation revealed that
the memory issue is in fact more limitating than the cost of
homomorphic operations themselves, at least when working
on an ordinary computer. While the (per bit) computational
overhead has decreased fastly over the past few years and
is getting closer or even better than other existing solutions,
the ciphertext growth still requires (too) much RAM memory.
Indeed, we implemented a ”depth cache” process to avoid
redundant Rescales, but it turns out the memory used by
the cache is slowing the computation more than the additional
Rescales (at least for the polynomial flavor of BGV and
running on a basic computer).

In addition to these results, we were able to execute
the same algorithms using the other two cryptosystems: the
vectorial BGV and the Smart-Vercauteren cryptosystem. For
the latter, the authors used the public implementation of the
Smart-Vercauteren cryptosystem HCRYPT (www.hcrypt.com)
to build a CryptoBit class. This way, the high-level al-
gorithms can be executed using any cryptosystem, providing
the writing of its own CryptoBit class. However, the only
results we were able to get with the vectorial BGV are for
toy parameters (with respect to security). Similarly, the set
parameters for HCRYPT are of trivial security. For these
reasons, the previous results cannot be compared with the ones
we give in this article, since we achieve here a level of security
of 40 and 80 (against 10 or 15 at most for the previous results).
That is why we decided not to include them along with the
results of the polynomial flavor of BGV, but they can be found
in [1].

VI. CONCLUSION

In this work, we have made a number of steps towards
bridging the gap between non trivial algorithms and their
practical, relatively seamless, execution on fully homomorphic
encryption schemes. We have also provided some preliminary
experimental results indicating that there is hope, in the near
term, to be able to homomorphically execute simple algorithms
on BGV-style cryptosystems in reasonable time.

Still, performance-wise, our results, in line with the results
of other research teams (most notably [14]), show that the

level of performance achieved is still far from enabling the
execution of more computationally involved algorithms in non
prohibitive time.

Despite this, there is hope in the sense that theoretical
progress has been fast-paced since 2009 (whith the theoretical
overhead decreasing by an order of magnitude equal to the
square root every year or so). From a practical viewpoint,
the cost of a homomorphic multiplication went from a couple
of hours in 2010, to a few seconds in 2011 and to a few
milliseconds in late 2012 (for similar architectures, usually a
single core of a relatively powerful commercial processor).
In comparison to a multiplication in the clear, we went from
a factor 1012 in 2010 to a factor 106 in 2006. Such an
evolution builds the hope of achieving overheads that are quite
satisfactory for numerous applications in 2013-2014 (since
countless applications only use a thousandth of a processor
capacity). In addition, research work on algorithm “FHE-
friendlyness”, on compilation (in the wide sense) as well as
on ad hoc optimized (parallel) execution support for these
cryptosystems is only just beginning. These latter fields of
research, as we have hinted in this paper, can be expected
to contribute significantly to the performance improvements
required to make homomorphic encryption-based computations
a practical reality.

REFERENCES

[1] C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey.
Recent advances in homomorphic encryption: A possible future for
signal processing in the encrypted domain. IEEE Signal Process. Mag.,
30(2):108–117, 2013.

[2] C. Aguilar-Melchor, P. Gaborit, and J. Herranz. Additively homomor-
phic encryption with d-operand multiplications. In CRYPTO’10, volume
6223 of Lecture Notes in Computer Science, pages 138–154. Springer,
2010.

[3] D. Boneh, C. Gentry, S. Halevi, and F. Wang. Private database
queries using somewhat homomorphic encryption. In 11th International
Conference on Applied Cryptography and Network Security - ACNS
2013, 2013.

[4] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved security for
a ring-based fully homomorphic encryption scheme. IACR Cryptology
ePrint Archive, 2013:75, 2013.

[5] Z. Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical gapsvp. In CRYPTO, pages 868–886, 2012.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS, pages 309–
325, 2012.

[7] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption
from ring-LWE and security for key dependent messages. In Advances
in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,
volume 6841, page 501, 2011.

[8] J.-S. Coron, T. Lepoint, and M. Tibouchi. Batch fully homomorphic
encryption over the integers. IACR Cryptology ePrint Archive, 2013,
2013.

[9] J.-S. Coron, D. Naccache, and M. Tibouchi. Public key compression and
modulus switching for fully homomorphic encryption over the integers.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT,
volume 7237 of Lecture Notes in Computer Science, pages 446–464.
Springer, 2012.

[10] C. Fontaine and F. Galand. A survey of homomorphic encryption for
nonspecialists. EURASIP J. Inf. Secur., 2007(1):1–15, 2007.

[11] C. Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig.

[12] C. Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of STOC’09, pages 169–178. ACM Press, 2009.

298289289

[13] C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic
encryption scheme. In EUROCRYPT, pages 129–148, 2011.

[14] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the
AES circuit. IACR Cryptology ePrint Archive, 2012:99, 2012.

[15] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption
with polylog overhead. In EUROCRYPT, pages 465–482, 2012.

[16] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and
learning with errors over rings. In EUROCRYPT, pages 1–23, 2010.

[17] H. Perl, M. Brenner, and M. Smith. Poster: an implementation of
the fully homomorphic Smart-Vercauteren crypto-system. In ACM
Conference on Computer and Communications Security, pages 837–
840, 2011.

[18] O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6), 2009.

[19] O. Regev. The Learning with Errors Problem (invited survey). In IEEE
Conference on Computational Complexity, pages 191–204, 2010.

[20] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[21] N. Smart and F. Vercauteren. Fully homomorphic encryption with
relatively small key and ciphertext sizes. In Public Key Cryptography,
PKC’2010, volume 6056 of Lecture Notes in Computer Science, pages
420–443. Springer, 2010.

[22] D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case
problems over ideal lattices. In EUROCRYPT, pages 27–47, 2011.

[23] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully
homomorphic encryption over the integers. In EUROCRYPT’2010,
volume 6110 of Lecture Notes in Computer Science, pages 24–43.
Springer, 2010.

299290290

