
An approximate method for throughput evaluation
of cyclo-static dataflow programs

Pascal Aubry, Mohamed Benazouz, Renaud Sirdey
CEA, LIST,

Embedded Real Time Systems Laboratory,

Point Courrier 94, 91191 Gif-sur-Yvette Cedex, France

Email : {p.aubry, mohamed.benazouz, renaud.sirdey}@cea.fr

Index Terms—many-core, dataflow, throughput evaluation,
buffer sizing

Abstract—Because of the multiplication of multi-core architec-
ture, dataflow programming languages regained interest during
the last years. In the case of massively multi-core embedded
system architectures, the computation of throughput is used for
buffer sizing under time constraints. This paper introduces an
approximate method for the throughput evaluation for cyclo-
static dataflow graphs.

I. INTRODUCTION

With the development of massively multi-core architectures,

the dataflow paradigm regains popularity. This programming

model represents concurrent processes communicating through

buffered-channels. In the case of embedded applications, the

management of different resources is primordial. The reason is

that these applications have a number of real-time constraints

that must be satisfied. One of these is the throughput depend-

ing on the sizes of channel buffers and on the execution times.

The most known dataflow model is the Synchronous

DataFlow Graph (SDFG) [9]. The processes are modeled by

nodes (tasks) which communicate via FIFO-channels (First-In-

First-Out). At each firing, a task produces (respectively con-

sumes) the same amount of data for each input (respectively

output) channel.

This model has been extended by the Cyclo Static DataFlow

Graph (CSDFG) [4]. In this model, each task is executed

repeatedly a finite number of occurrences. A task fires if

the data in input is sufficient. At each occurrence a different

quantity is produced/consumed on each input/output channel.

In this paper we propose an approximate method to compute

throughput for CSDFGs. Several measures for the throughput

can be defined. The most used one is the maximum throughput,

which can be deduced from an “as soon as possible” (ASAP)

execution. This method consists in searching for a periodic

pattern in the execution of the CSDF that can be repeated an

infinitely large number of times after a first transient phase

[7]. The maximum throughput can be computed using the

number of executions of different tasks in this periodical

phase. The size of the periodic pattern depends on consump-

tion/production values and can be exponential. For large CSDF

systems this method cannot provide a result in a reasonable

time. That is why it is important to find a good approximation

for the maximum throughput. Another method for finding

the maximum throughput is to transform the CSDFG into

a Homogeneous Synchronous DataFlow Graph (HSDFG) [4]

and apply the Maximum Cycle Mean algorithm (MCM) [5].

The main problem of this solution is the exponential size of

the generated graph and its impact on the running time of

the MCM algorithm. Even for small CSDFGs, the size of the

HSDFG can be prohibitively large.

In this paper, we introduce a new method, based on self

timed execution, for finding an approximate value of the

throughput. This method provides a good alternative in the

case when the research of the pattern is complex and time

consuming. The purpose of throughput evaluation is to com-

pute a sizing for buffers.

The paper is organized as follows: the CSDFG model and

the employed notations are presented in Section 2. The model

for finding the self timed execution is presented in Section

3. We introduce the evaluation of the throughput in Section

4. In Section 5 we present the experimental results we have

obtained and, finally, Section 6 contains our conclusions and

future works.

II. CYCLO-STATIC DATAFLOW GRAPH

Let us define a Cyclo-Static DataFlow Graph as a directed

graph G =(T,A) where T is the set of tasks and A is the set

of communication links between different tasks. Every task

t ∈ T is defined by a succession of transitions that are denoted

by τk (t), k ∈ {0, . . . , nτ (t)− 1}, where nτ (t) ∈ N
∗.

Each transition of a task is executed cyclically every nτ (t)
occurrences of the task. A task is said to be executed when

it finishes a cycle of transitions. We denote by γ ∈ N
|T | the

repetition vector of the application. It assures that the system

comes back to its initial state (in terms of token number on

links) if each task is executed exactly γt times. The set of

executions for all tasks is called a cycle of execution of the

system.

A task can produce or consume on different links. For each

task, we define Pt ∈ A (respectively Ct ∈ A) the set of links

for which t is a producer (respectively consumer), with Pt ∩
Ct = ∅. For each link l ∈ Pt (respectively l ∈ Ct) and for each

transition τk(t) we associate a quantity qpl (k) (respectively

qcl (k)) of data tokens produced (respectively consumed) by

this transition.

2014 Eighth International Conference on Complex, Intelligent and Software Intensive Systems

978-1-4799-4325-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CISIS.2014.61

433

2014 Eighth International Conference on Complex, Intelligent and Software Intensive Systems

978-1-4799-4325-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CISIS.2014.61

433

For each link l ∈ A we define qpi (l) (respectively qci (l))
the total quantity produced (respectively consumed) by the

link l at the end of the ith (i ∈ N) occurrence of the pro-

ducer (respectively consumer). This production (respectively

consumption) is done by the task p (l) ∈ T (respectively

by c (l) ∈ T). It exists exactly one producer and one con-

sumer by link. If p (l) occurred i times, i.e. p (l) has been

executed n (p (l)) =
⌊

i
nτ (p(l))

⌋
times and the last executed

transition is τk (t) such as k = i%nτ (p (l)) then qpi (l) =

n (p (l)) × ∑nτ (p(l))−1
j=0 qpl (j) +

∑k
j=0 qpl (j). In a similar

way, we can deduce the equation for the data consumed by

c (l): qci (l) = n (c (l))×∑nτ (c(l))−1
j=0 qcl (j) +

∑k
j=0 qcl (j).

In the context of embedded massively multi-core architec-

ture, we need to work within bounded memory. For each l ∈ A
we define the size of the buffer as dl ∈ N. The vector d
is called the storage distribution of the CSDFG. Sometimes

several buffers can contain data in the initial state of the

system. This initial data is called preload. Let q0 (l) ∈ N be

the preload of link l.

Figure 1. An example of CSDFG.

Figure 1 is a simple example for a CSDFG, composed

of two tasks, t1 and t2, that share data via the link l0.
Task t1(resp. t2) has 3 transitions (resp. 2). The repetition

vector for this application is γ = [4, 7]. The productions and

consumptions for l0 are qpl0 = [1, 4, 2] and qcl0 = [1, 3]. The
size for the buffer of l0 is equal to the minimum size possible,

i.e. dl0 = 6. No data is present in the buffer at the beginning

of the execution.

III. COMPUTATION OF THE SELF TIMED EXECUTION

The method introduced in this paper is based on an ASAP

execution of multiple CSDFG execution cycles, which is called

the self timed execution. For a given storage distribution, we

aim to compute the throughput of the tasks and check if the

target throughput is reached. Different constraints describing

the execution of the system must be introduced in order to

compute tasks throughputs. The set of these constraints defines

a scheduling graph and gives an execution order.

For each task t, let us define αi (t) (respectively βi (t)) the
start time (respectively end time) of the ith occurrence of t.

For each task t, let ϕt ∈ R
nτ (t)
+ be a vector with the execution

times of transitions for task t.

Time consistency constraints

For each task t, the end time execution of an occurrence i
is equal to the start time of this occurrence plus its execution

time:

βi (t) = αi (t) + ϕt (i%nτ (t)) , ∀t ∈ T, ∀i ∈ N.

For each task t, its start time must be greater than the end

time of the previous occurrence:

βi (t) ≤ αi+1 (t) , ∀t ∈ T, ∀i ∈ N.

Production consistency constraints

For a link, the total quantity of stored tokens in the asso-

ciated buffer must always be larger than the total quantity

of consumed tokens. Thus, for each link l, if for the ith

occurrence of the producer p (l) and for the jth occurrence

of the consumer c (l) we have qpi−1 (l) + q0 (l) < qcj (l) and

qpi (l) + q0 (l) ≥ qcj (l) then :

βi (p (l)) ≤ αj (c (l)) , ∀i ∈ N, ∀j ∈ N.

Capacity constraints

For each link l, the quantity of data contained in its buffer

must never exceed the buffer size, i.e. the difference between

the total produced quantity and the total consumed quantity, at

any time, must not be larger than the difference between the

size of the buffer and its preload. Thus for each link l, if for the
ith occurrence of the producer p (l) and for any jth occurrence

of the consumer c (l) we have qpi (l)− qcj−1 (l) > dl− q0 (l)
and qpi (l)− qcj (l) ≤ dl − q0 (l) then :

βj (c (l)) ≤ αi (p (l)) , ∀i ∈ N, ∀j ∈ N.

Function to minimize

We aim to find the smallest date when an occurrence of a

task can start. Thus, we must minimize the end date (which

is equivalent to minimize begin date) of all the transitions:

min
∑
t∈T

∑
i∈N

αi (t)

These constraints can be modeled as a dependency graph,

where the nodes represent the executions of task occurrences

and the arcs are the constraints between theses occurrences.

The weight of an arc between two task occurrences is equal

to the execution time of the tail occurrence.

In Figure 2 is illustrated the dependency graph of appli-

cation from Figure 1. We remind that the repetition vector

for (t1, t2) is equal to γ = [4, 7]. In one execution cycle

task t1 occurred 12 times (nτ (t1) .γt1) and task t2 14 times

(nτ (t2) .γt2). The size of the buffer is equal to 6. Black arcs

correspond to consistency constraints (time and production)

and red arcs correspond to capacity constraints. Thanks to

this graph, we are able to compute efficiently the self timed

execution for the application.

IV. COMPUTATION OF THE THROUGHPUT FOR A GIVEN

STORAGE DISTRIBUTION

Different methods have been proposed for computing the

throughput, either exact or approximate. The self timed exe-

cution provides the maximal throughput. The throughput of a

task corresponds to the number of occurrences per unit time.

It is denoted by Th(t). We can define the throughput of the

CSDF G =(T,A) as Th(G) = Th(t)
nτ (t)γt

for an arbitrary t ∈ T
[7].

434434

��� ���

���

���

���

��� ���

���

���

���

��	

��	

��
 ���

��

���

���

���� ����

����

����

����

����

��� ��� ��� ���� ����

Figure 2. Dependency graph for one execution cycle of the application illustrated in Figure 1.

The self timed execution has 2 sequential phases: a transient

phase composed of a finite sequence of occurrences and a

periodic phase. The transient phase is bounded while the

periodic phase repeats indefinitely. [12] describes an exact

method for finding the value of the maximal throughput.

This method extracts the periodic phase and computes the

throughput for this phase. As the system is supposed to be

executed indefinitely, the throughput of the system tends to be

equal to the throughput of the periodic phase. Although this

method finds the maximal throughput, it is efficient only for

simple CSDFs with a moderate size for the cycle execution.

The main difficulty is the extraction of the periodic phase

which is exponential. Thus, for complex CSDFs the time

required for the computation of throughput and the number

of states to store is prohibitively large. This is the main

motivation to develop a method that can give a good lower

bound to the maximum throughput, with a lower computing

time and smaller storage needs.
Hereafter we introduce a method that computes a lower

bound to the throughput. Because the research of the periodic

phase can take a huge amount of time and/or storage memory,

it is more efficient to compute an approximate value for the

throughput. Our idea is based on an experimental observation

that even if a limited number of states is examined it is possible

to find a sufficiently close bound to the exact value. The

purpose of our method is to generate a sequence of a schedule

using the self timed execution that we will repeat indefinitely

to get a complete schedule. We compute the throughput for this

sequence. We call it the root sequence of our schedule. After

the computation of the self timed execution for a significant

number of occurrences, it is possible to consider a number of

execution cycles as the root sequence. For the global schedule,

the exact copy of the root sequence may, for example, begin

at the end of previous occurrence (i.e. the last occurrence of

the previous root sequence).

�

������	

������

�

�

�� �����
������

������	

������	

Figure 3. Representation of the scheduling for a 3 tasks application with a
root sequence starting at the end of previous root sequence.

Figure 3 gives an example for the generation of such a root

sequence. After the computation of the self timed execution

for n execution cycles, let us define τ0 as the beginning of

the (n+ 1)
th

execution cycle, i.e. the start time of the first

occurrence of task t1. The first n cycles are ignored because

these states are more likely to be in the transient phase. Indeed,

especially the beginning transient phase induced underestima-

tion of the lower bound. Let us compute k execution cycles

from τ0 and define these k cycles as the root sequence. We

can define the beginning of the next sequence, i.e. the begin

date of the first occurrence of t1 in our example, at the end

time of the last occurrence of kth cycle from τ0, i.e. at the end

of execution of the last occurrence of t3. The delay between

the self timed execution (in dotted lines) and the periodic

execution is also shown in the Figure 3.
For finding the application throughput we need to compute

the inverse of the duration between the beginning of the two

sequences multiplied by the number of execution cycles k.
Another solution, which provides a better bound, is to define

the beginning of the following occurrence as soon as it is

possible to get the periodicity. The shape induced by the start

time of first occurrences of tasks at τ0 must be repeated in

the following execution cycle. With this method, at least one

task starts at the same time as the self timed execution of the

following cycle.

�������	

�������	

�����

�	

�

��

��

�

�������	

Figure 4. Representation of the scheduling of the same 3 tasks application
as in Figure 3 with an improved periodic phase.

Figure 4 shows a scheduling with the same root sequence

as in Figure 3, with the same self timed execution. After k
cycles of execution from τ0, the new phase begins as soon as

it is possible to get the same shape as the one from τ0. Tasks
t1 and t2 are delayed from the (k + 1) th ASAP. The task t3
occurred at the same time as the ASAP time. The throughput

is computed like in the previous method.
It is easy to prove that the obtained throughput is a lower

bound to the maximal throughput. Indeed, the self timed exe-

cution gives the maximum possible value for the throughput,

so in the best case the proposed approximate method will give

this value as throughput.

435435

If the computation of the throughput uses an approximate

method without extracting the periodic phase, the number of

states to store will be limited. The number of execution cycles

to store for the computation of the self timed execution is

determined by

maxl∈A

(⌈
q0(l)

γp(l)

∑nτ (p(l))−1
j=0 qpl(j)

⌉
,⌈

dl

γp(l)

∑nτ (p(l))−1
j=0 qpl(j)

⌉)
.

This expression represents the number of cycles required

for expressing all production consistency constraints and all

capacity constraints. The start times for the first execution

cycle of the root sequence are required for the evaluation of its

duration, i.e. |T | start times. And lastly, during the computation

of the self timed execution it is only required to store the start

dates for the current states, i.e. only for the |T | current states.
The obtained value of the throughput converges in a non-

monotonic way to the value of the maximal throughput in

function of the number of the execution cycles. The throughput

depends on various parameters : number of states for cycles of

execution, storage distribution and preload values. The choice

of the number of cycles to schedule an approximate throughput

depends on these parameters.

Let us introduce a trivial application allowing us to un-

derstand the advantage of our approximate method. This

application is composed of one transmitter T connected to

two receivers: R1 and R2. Transmitter and receiver tasks

are both SDF and they produce (or consume) one data at

each firing. The repetition vector associated to the SDFG

is γTR =
[
1 1 1

]T
. The two communication links are

defined by l0 and l1.

Figure 5. Simple application with 1 transmitter and 2 receivers.

Let us define the size of buffers dl0 = 3 and dl1 = 3. These
buffers are empty at initial state. The execution time for the

transmitter T is set to 10 ms. The execution time of R1 is

set to 99 ms and the execution time of R2 is set to 100 ms.

The execution pattern search algorithm needs to proceed 191

to execution cycles before finding the periodic phase. Even if

it is a simple application, the number of execution cycles to

proceed is high because the execution times of the receivers

are similar. At each end of an execution cycle, the end of R2

is shifted with 1ms from the end of R1. The periodic phase

is reached when T can’t fire anymore because the buffer of l1
is full. The more the size of the buffer of l1is is large, higher

is the number of execution cycle to get. In this example, each

time the size buffer of l1 is increased by 1, 100 more execution

cycles are needed to find the periodic phase. The lower the

gap between execution times of R1 and R2 is, the higher the

number of execution cycles needed to find the periodic phase

will be.

It is obvious that the throughput evaluation of this ap-

plication is easy to solve because of its specifications. But

such a scheme can be nested several times in a greater

application with non-trivial repetition vector. The cost of

finding the periodic phase can increase with the complexity

of the application. In the case of buffer sizes evaluation, the

throughput evaluations must be repeated a number of times

growing exponentially with the number of buffers. The number

of execution cycles in the periodic phase can also be very high.

Thus it is necessary to have an approximate method.

V. EXPERIMENTAL RESULTS

Buffer sizing under throughput constraints is used in the

context of many-core embedded architectures. The method we

propose is used in an end-to-end compilation chain for the

ΣC dataflow programming language [8][1]. The method we

developed for throughput evaluation uses both the exact and

the approximate computation of the throughput presented in

Section 4. The exact method is used during the scheduling of

states. When a periodic pattern is found, the exact throughput

is returned. Otherwise, if a sufficient number of states have

been scheduled, we define a root schedule and we compute

a lower bound for the throughput. The method used for

exploring the storage distributions space is the same as the one

presented in [12]. For each storage distribution explored, an

evaluation for throughput is realized. The applications used for

the tests have been implemented in ΣC language. For all these

applications we consider the shared data are homogeneous or

have been homogenized previously in the compilation chain.

First, we tested some applications presented in different

papers. The MP3 playback is a simple benchmark used for

evaluating computation of minimal buffer sizes under through-

put constraints methods[13][2]. This application is a sequence

of 4 tasks, but even if there are only 4 tasks, the number of

occurrences in one execution cycle is 10791. For this example

the exact method provides results from less than 4 execution

cycles for every storage space. By comparison with the exact

method, our approximate method gives a similar throughput

in the same number of execution cycles.

[2] presents a version of an improved MP3 playback with

two independent input streams. When testing this application

we obtain some interesting results: for certain distribution

storages, the exact method is able to find a periodic pattern

only after proceeding an important number of scheduling.

[10] provides a CSDF of a channel equalizer application.

This application is used to compensate the distortion of a FM

signal. Here dependency arcs are added in order to model

the accesses on the memory shared of the tasks on the same

processors. The methods proposed in [2] and [13] do not

manage to provide the throughput of this application. [3] gives

an underestimate value of the maximal throughput for the

optimal distribution storage. Our approximate method gives

436436

the optimal results of maximal throughput evaluation for this

distribution storage.

We tested these applications, without searching the periodic

pattern for various applications. Our aim is to test the accuracy

of our approximate method. In all applications tested, the

approximate method gives a satisfying result within the 5

first execution cycles. It provides almost the same throughput

(differences are insignificant). For the example of the MP3 ap-

plication with 2 inputs, the exact method finds the throughput

for one distribution after scheduling 370 execution cycles. As

each cycle is composed of 10998 occurrences, the number of

states to explore is equal to 4157244. This number is huge for

an application with only 6 tasks. The approximate method can

provide the same throughput value in only 4 execution cycles.

We have also tested our method on a motion detection ap-

plication which performs the tracking of a target in a sequence

of video frames. This application is interesting for illustrating

the advantage of the approximate method for throughput

estimation. In this application, two successive video frames are

analyzed and the movement of targets between these frames

is outputted. The method is based on the Block Matching

Algorithm. This algorithm aims to discover the temporal

redundancy between two successive images and find matching

blocks in these frames. In this method we compare the absolute

difference of measure between a pixel and the corresponding

pixel in previous frames. Each frame is divided in horizontals

strips. The standard deviation is computed for all the macro-

blocks of size 8x8 of a strip and the minimum is selected. The

minimum standard deviation of all the strips is selected as a

threshold (or noise level). We apply a filter to generate a binary

image which reveals pixels for which the deviation of the

absolute difference is over the threshold. Then, all connected

components are computed for each strip there is a difference

in pixels. The application ends with merging all the connected

components which are overlapping on different strips. The

output image shows the moving targets with bounding boxes.

Figure 6 [11] is an overview of the ΣC dataflow graph of

the motion detection application. Two video frames readers

(io), for current and previous frames, are in input. 8 different

strips of both images are distributed via split tasks (s) to the

Δ agents. The Δ agents process the difference between the

2 frames. The outputs of Δ agents are duplicated (empty

vertexes are the duplicate tasks). The first output of the

duplicate task sends data to a σ agent which processes the

variance of the absolute difference. All the σ agents merge to

the agent m which select the minimal variance. The square root

of this variance defines the threshold for the construction of the

binary image. The threshold agent (t) compares the deviation

of the result of Δ agents and the value of the threshold. Agent

t builds a binary image by strip which is used by agent c for

the extraction of connected components. The second agent m
makes the fusion between bounding boxes of each strip. The

video frame writer(io) gives the output image identifying the

moving targets.

Each agent in Figure 6 is composed of multiple tasks. The

application has 67 tasks and 95 links. Each execution cycle

number of pattern
throughput time elapsed

execution cycles found
MD 100000 no 24.47Hz >30 min
MD 4 - 24.47Hz 1ms

MD revised 20000 no 24.53Hz >5min
MD revised 4 - 24.52Hz 1ms

Table I
RESULTS FOR MOTION DETECTOR APPLICATION.

contains 95 occurrences. The application can be considered

as a relatively simple application. The simulation, using ISS

(Instruction Set Simulator), gives the number of processor

cycles for each agent execution. The execution time is deduced

from the mean of these executions. This application is mapped

on the architecture provided by Kalray and presented in [6].

The frequency of the chip is 400MHz. The duplicate and the

split tasks have no execution times because they are system

tasks which are compiled. Theoretically, they do not exist

and are not mapped to the chip. The test have been made

with execution times for these agents equal to 0, 1 and 500

processor cycles. The results obtained have been almost the

sames for each one of the three configurations.

First, we used the mean execution time for all single tasks of

the motion detection application. The execution times for tasks

of the same types are different but close in value. With these

execution times, the exact method does not manage to find the

periodic pattern after the computation of more than 100000

execution cycles for all the distribution storages the target

throughput is satisfied. The observed behavior is similar to

the application presented in Figure 5. The end of the transient

phase is not reached after a large number of execution cycles.

Our approximate method provides a satisfying throughput, for

all explored distributions, after only 4 execution cycles.

We performed the test for the motion detection application

with the same execution times for all tasks of the same type

(MD revised). We affected the mean times to all tasks of the

same type. Even in this case there are distributions for which

we do not manage to find the periodic pattern after 20000

execution cycles.

Table I shows the results obtained for the motion detection

application. We compare the difference between the approach

using exact method with approximate method after the pro-

cessing of a certain number of execution cycles and the

approximate method limited to 4 cycles. We can see that the

results obtained with the approximate method in 4 cycles are

similar whereas the time needed for computing buffer sizes is

in the order of the millisecond.

The approximate method seems to be valid with such

results. Nevertheless, there must be applications where the

exact method is more efficient and gives a better accuracy for

a small number of execution cycles: applications for which the

approximate method converges in a non-monotonic way to the

exact value of maximal throughput. However, we can say the

approximate method we propose is an accurate complement

to the exact method. Indeed, the more the periodic pattern of

execution is searched, the more the root sequence is large and

437437

Figure 6. Dataflow scheme for motion detection application.

the approximate throughput will be close to the exact value.

VI. CONCLUSION

In this paper we presented a new method for the computa-

tion of throughput in order to evaluate the buffer size. Existing

methods have several disadvantages. Exact methods can be

efficient for simple cases, but the throughput evaluation and

the storage space to explore have an exponential complexity.

Existing approximate methods are efficient but the under-

estimation of throughput and/or buffer sizes are important

for many applications. Moreover these methods can’t provide

results for a certain type of applications.

Our method combines both exact and approximate methods

for the evaluation of the throughput. This technique avoids

a too long exploration of the state space in order to find

the periodic phase and minimize the underestimation of the

throughput.

The next step is to improve the algorithm of the research

in the distribution storage space. Indeed, even with the ap-

proximation presented in [12] the number of storage space to

explore remains exponential. We want to develop an accurate

method which is polynomial with the number of buffers to

dimension in the application.

Another problem to investigate is to introduce uncertainty

in the execution times of the tasks. Indeed, in function of

the input, the time needed for the execution of a task can

vary significantly. We may be able to take into account these

variations in the throughput evaluation. The main issue is

that taking into account the uncertainty will complexify the

problem of the throughput evaluation and we will have to

perform some approximations. We should see if the results

of this research path are interesting compared to those given

by a worst case execution time approach.

REFERENCES

[1] Pascal Aubry, Pierre-Edouard Beaucamps, Frédéric Blanc, Bruno Bodin,
Sergiu Carpov, Loïc Cudennec, Vincent David, Philippe Dore, Paul

Dubrulle, Benoît Dupont de Dinechin, et al. Extended cyclostatic
dataflow program compilation and execution for an integrated manycore
processor. Procedia Computer Science, 18:1624–1633, 2013.

[2] M. Benazouz, O. Marchetti, A. Munier-Kordon, and T. Michel. A new
method for minimizing buffer sizes for cyclo-static dataflow graphs. In
Embedded Systems for Real-Time Multimedia (ESTIMedia), 2010 8th
IEEE Workshop on, pages 11–20. IEEE, 2010.

[3] M. Benazouz, A. Munier-Kordon, et al. Cyclo-static dataflow phases
scheduling optimization for the throughput constrained buffer sizes
minimization problem. 2011.

[4] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-
static data flow. In Acoustics, Speech, and Signal Processing, 1995.
ICASSP-95., 1995 International Conference on, volume 5, pages 3255–
3258 vol.5. IEEE, May 1995.

[5] Ali Dasdan, Sandy S. Irani, and Rajesh K. Gupta. Efficient algorithms
for optimum cycle mean and optimum cost to time ratio problems. In
DAC ’99: Proceedings of the 36th ACM/IEEE conference on Design
automation, pages 37–42, New York, NY, USA, 1999. ACM Press.

[6] Benoît Dupont de Dinechin, Pierre Guironnet de Massas, Guillaume
Lager, Clément Léger, Benjamin Orgogozo, Jérôme Reybert, and Thierry
Strudel. A distributed run-time environment for the kalray MPPA R©-256
integrated manycore processor. Procedia Computer Science, 18:1654–
1663, 2013.

[7] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen,
M. R. Mousavi, A. J. M. Moonen, and M. J. G. Bekooij. Throughput
analysis of synchronous data flow graphs. In Sixth International
Conference on Application of Concurrency to System Design (ACSD’06),
pages 25–36. IEEE, 2006.

[8] Thierry Goubier, Renaud Sirdey, Stéphane Louise, and Vincent David.
ΣC: A Programming Model and Language for Embedded Manycores.
In ICA3PP (1), pages 385–394, 2011.

[9] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[10] A. Moonen, M. Bekooij, R. van den Berg, and J. van Meerbergen.
Evaluation of the throughput computed with a dataflow model-a case
study. Eindhoven University of Technology, Department of Electrical
Engineering, Electronic Systems. ISSN, pages 1574–9517, 2007.

[11] Renaud Sirdey. Contributions à l’optimisation combinatoire pour
l’embarqué: des autocommutateurs cellulaires aux microprocesseurs
massivement parallèles. Habilitation, Université de Technologie de
Compiègne, 2011.

[12] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering trade-off ex-
ploration for cyclo-static and synchronous dataflow graphs. Computers,
IEEE Transactions on, 57(10):1331–1345, 2008.

[13] Maarten H. Wiggers, Marco J. G. Bekooij, and Gerard J. M. Smit. Ef-
ficient computation of buffer capacities for cyclo-static dataflow graphs.
In Proceedings of the 44th annual Design Automation Conference, DAC
’07, pages 658–663, New York, NY, USA, 2007. ACM.

438438

