
Generating Code and Memory Buffers to Reorganize Data

on Many-core Architectures
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Abstract
The dataflow programming model has shown to be a relevant approach to efficiently run mas-
sively parallel applications over many-core architectures. In this model, some particular builtin
agents are in charge of data reorganizations between user agents. Such agents can Split, Join
and Duplicate data onto their communication ports. They are widely used in signal processing
for example. These system agents, and their associated implementations, are of major impor-
tance when it comes to performance, because they can stand on the critical path (think about
Amdhal’s law). Furthermore, a particular data reorganization can be expressed by the devel-
oper in several ways that may lead to inefficient solutions (mostly unneeded data copies and
transfers). In this paper, we propose several strategies to manage data reorganization at compile
time, with a focus on indexed accesses to shared buffers to avoid data copies. These strategies
are complementary: they ensure correctness for each system agent configuration, as well as
performance when possible. They have been implemented within the Sigma-C industry-grade
compilation toolchain and evaluated over the Kalray MPPA 256-core processor.
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1 Introduction

Many-core processors are composed by hundreds, if not thousands processing cores on a single
chip. These cores are connected by a network on chip (NoC) that mirrors the global chip
organization, from a flat 2-D mesh, to complex hierarchical clustered architectures. Many-core
are expected to enter green high performance computing, embedded systems and mobile devices,
as they offer processing power while keeping a reasonable power consumption. However, getting
high performance is conditioned by the efficient use of the chip, mainly relying on massive
parallelism that is still hard to express in regular programming languages.

In this context, the dataflow paradigm appears to be a relevant approach. Processings
are executed by agents (or tasks, depending on the language) onto data that are exchanged
using a set of user-defined communication links. The inherent parallelism comes from the
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concurrent execution of agents on different data. With dataflow languages, developers can
focus on the processing code while all communications and synchronizations between agents
are transparently optimized by the compilation toolchain and then handled by the runtime.

However, transparency has a price when it comes to performance. While in regular parallel
programming languages it is possible to finely tune every aspect of task creation, communica-
tions, data localization and migration, with dataflow programming these tuning are now the
responsability of the sole compiler. In order to hide these parallelism considerations, most of the
toolchains achieve compilation steps such as graph instanciation, task scheduling, task place-
ment and communication routing, with a few, if not any help from the developer. Compilation
results are part of the runtime, a code-generated library that gathers all information to run a
particular application.

One of the main application performance issue is to efficiently manage communications be-
tween tasks. In the dataflow programming model, communications share some similarities with
the message passing programming model. However, the underlying implementation does not
necessarily rely on message passing. Depending on the targeted architectures, communications
can be achieved using message passing, unified and shared memory, or other complex systems
like a DMA (direct memory access). Therefore, choosing the right method to implement com-
munications has two goals: correctness and efficiency. And this has to be done to every single
communication channel.

In dataflow languages, some particular agents - that we call system agents in the following
- are defined to reorganize data between processing agents. For example, some widely-used
system agents include the Split agent that spreads data among communication ports, the Join
agent that merges data, and the Duplicate agent. Despite the fact that these agents do not
necessarily have a real existence at run time 1, their implementations might imply non negligible
processing costs, which is particularly true when composed together (e.g. a split followed by
a join agent). From the compilation point of view, system agent composition brings severe
complexity for both correctness and efficiency goals. One of the main objective of the compiler
is to limit the number of online buffers and data copies to achieve communications.

In this paper, we present and evaluate several contributions that have been proposed to
manage system agents within a state-of-the-art industrial-grade dataflow compiler [3]. We
describe three compilation strategies to reorganize data that can be deployed on different many-
core architectures. The first strategy consists in calculating access indexes to shared buffers.
This appears to be the most efficient approach because processors directy read and write memory
without indirection. However this can only be applied in particular data reorganizations, using
a physical shared memory. The second approach consists in generating micro-code to drive a
DMA. This approach is less efficient than the latter one, but it can be applied without physical
shared memory. Finally, the compiler can fall back into a user-code compilation mode that
consists in writing genuine dataflow source code for each system agent. This approach is clearly
inefficient because of the numerous buffers and data copies that are involved. However, this
can be safely used in all situations and it ensures to find a solution even with complex system
agent compositions.

The remaining of this paper is organized as follow. The second section presents the dataflow
paradigm and data reorganizations. Section three presents different compilation strategies that
are evaluated in section four. Section five concludes this paper.

1the concept of agents proposed by the programming language does not necessarily match with the concepts
used by the underlying system (e.g. system thread).
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2 Data reorganization and the Dataflow Paradigm

Dataflow programming is one paradigm in which processings are organized within communicat-
ing tasks. A dataflow program consists in defining tasks (also called agents in the remainder of
the paper), and in describing the application structure (basically connecting ports in order to
build a graph). Data are written onto output ports and read onto input ports, in a sequential
and FIFO way. For example, a picture can be sent between two agents pixel by pixel, line by
line or even in a single block of data.

Most of the applications require more or less complex data reorganizations between tasks.
As an example, a simple edge detection application can be written using two successive parallel
filter steps, as illustrated in figure 1. In this example, processings are first applied on the lines,
then on the columns of each image. As filters read an write pixels sequentially, a transposition of
the image is applied in between. This transposition is implemented thanks to the combination
of a join and a split agent with appropriate production and consumption quantities (the k
parameter).

Figure 1: Communication graph for an edge detection applica-

tion. System agents are used to spread lines, then columns among

filtering agents. Consumptions and productions are given by k.

System agents. However, some
agents may build data from non-
contiguous parts of the original
data. For example, reading a
macro-block 2 (say BW wide and
BH height) in a picture (W wide
and H height) requires to select
some sparse parts of a given num-
ber of lines. This pattern, as ap-
plied on a streamed picture, con-
sists in looping BH times a read
of BW pixels followed by a shift of
the image width W minus the block
width BW . There are basically two
ways of doing this. A first one is
to build the macro-block within the
producer agent and directly write it
onto the output port to the con-
sumer. This makes the producer
wait for all the pixels (even the un-
needed ones) before sending the block, leading to an excessive use of memory (it may not be
possible to store all the data needed to build the block, especially in the context of embedded
architectures). It also relies on user-code that is in charge of building and filling an appropriate
memory structure, which is quite an annoying, error-prone and repetitive task for the developer.
A second way, as illustrated in figure 2, is to use builtin agents. In this example, the image is
split onto the seven output ports of the Split agent. Each port receives a sequence of pixels as
described in the right part of the figure. From outputs 1, 3 and 5, it is possible to rebuild the
block thanks to a round-robin Join agent. This solution has two major interests. First, there is
no user-code involved (except maybe for the production and consumption quantities that are
set for each system agent port): processing agents written by the developer receive ready-to-use
data. Second, the data reorganization is under the control of the compilation toolchain and as

2we consider a macro block as a block of pixels, not following the MPEG definition
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a matter of fact, it benefits from a dedicated implementation, as well as several optimizations
for the targeted platform.

Figure 2: Using a Split and a Join to read a block within an image. Image size: W ∗H, block size: BW ∗BH,

offset: (V O ∗W ) +HO.

Data reorganization compilation. In order to let the compiler deal with data reorga-
nization, some stream and dataflow-based languages propose a set of system agents. These
builtin agents can be used thanks to reserved keywords and an appropriate syntax. This is
particularly true for Streamit [14] (using Pipeline, Splitter, Joiner and FeedbackLoop compos-
ing filters), Sigma-C [12] (using Split, Join and Dup system agents), Tau-C [11] (using Split,
Join and Dup system tasks), SPL [13] (using Sort, Split, Join, Aggregate stream operators)
and GreenStreams [4] (using SplitJoin and FeedbackLoop stream filters). In a slighly different
approach, CAL [8] proposes to bind data sequences between ports thanks to the definition of
index sequences (refered as multiport input patterns). While most of the publications available
for these languages deal with expressiveness, application case studies and general compilation
strategies, a very few information are given on the particular problem of the implementation of
data reorganization. In the Streamit project [2, 10], the authors present several contributions in
which the compiler is able to modify the application graph, based on the recognition of system
agent patterns. Fission and reordering transformations simplify the application graph to get
better performance. In [7, 6], transformations are also applied at compile time onto system
agents in order to adapt the degree of parallelism to the execution platform. However, these
optimizations remain at a high level of abstraction in the application description and do not
give elements on generating an efficient runtime for data reorganization.

The Sigma-C dataflow language. In this paper, we show how data reorganizations are
processed at compile time to be handled in a runtime for a dataflow programming language.
We focus on the Sigma-C [12] language that has been proposed to enhance manycore pro-
grammability, and has been successfully implemented and validated with the Kalray 256-core
MPPA processor [1]. Sigma-C is based on a deterministic process network with process be-
haviour specifications, which is very close to cycle-static dataflow (CSDF [5]). Sigma-C has
been designed as an extension of the regular ANSI C language, with some additional keywords
to declare agents and establish connections between ports. In the model, the agent specifica-
tion defines all consumptions and productions that occur on communication ports each time the
agent is fired up (what is called an occurrence). It is possible to specify different consumptions
and productions depending on the occurrence number. For example, a classic behaviour for the
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round-robin split agent is to read kj data on its input port and to write kj data on output port
i (i being incremented the next occurrence and looping to the first output port when reaching
the last one). This accurate specification is used by the compiler in order to verify properties
such as communication buffer sizing, deadlocks, task placement, routing and tuning of the de-
gree of parallellism. The specifications play a central role for building the runtime 3, as they
are used to determine the scheduling of the task occurrences, the number of communication
buffers, their sizes and as presented in the next section, the data access patterns.

Equivalence of pointers. The data reorganization compilation has several constraints. A
first constraint, tightly coupled with the programmability of the Sigma-C language, makes
possible to transparently access communication ports by defining aliases. These aliases can be
manipulated either as primitive types in case of a single data, or as a memory pointer in case
of complex structures. This is convenient from the developer point of view because ports can
be directly read and written without the use of a dedicated API. Port aliasing is motivated by
the possibility to transparently manage all communications and to ease the porting of regular
C applications. However, transparency brings complexity on the compiler side that has to
ensure that all aliases point to a contiguous memory space. This property, called equivalence of
pointers, allows to access buffers without any indirection. Pointer arithmetic is offered without
degrading the performance (for example reading an array by adding its aliased based memory
address and an online-evaluated offset). For each occurrence of the task and for each of its port,
the compiler is in charge of building a memory space (shared with one or more ports) that is
big enough to host the expected data, and to properly update this buffer with incoming data.
Furthermore, if an input port is connected to a combination of system agents, the data update
has to mirror the corresponding reorganization.

Performance and correctness. Another constraint is to offer reasonable performance while
executing data reorganizations. In parallel and distributed computing, a large amount of time
can be spend in copying data between buffers. This can be seen for example in high performance
networking with zero-copy protocols that let the user code directly access data received at the
bottom of the network stack. In our context, we minimize the number of buffers by merging
them into shared buffers when possible. Finally, a constraint consists in finding a solution to
each system agent combination (several system agents connected together with at least one
communication port, also called a system surface in the following). If most of the time there
is a trivial way for compiling a single agent, agent combinations introduce complex memory
access patterns for agents connected to the system surface. In that particular cases, if these
patterns are too complex to calculate, the compiler falls back to a simple mode with multiple
temporary buffers.

3 Data Reorganization Strategies at Compile Time

The Sigma-C toolchain is made of four main compilation steps. The first step applies lexical
parsing and semantic analysis. The second step instantiates the application graph and adapts
the parallelism degree. The third step proceeds to the buffer sizing, task scheduling and the
place and route of tasks onto the hardware. Finally, the fourth step generates the runtime and

3In this paper we consider the runtime as a set of instanciated parameters and some generated pieces of
code, to be used with system functions that are part of a system software.
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processes a hierchical linking with the user code and the system software. We describe how
these steps are involved in the compilation of system agents, using three different strategies.

Figure 3: Access patterns and the occurrence scheduling graph.

Shared Buffers and Indexes Generation. Shared buffers are one efficient strategy to
reorganize data. For each system agent surface a shared buffer is created and for each com-
munication port belonging to the edge of the surface, a data access pattern is calculated. This
pattern defines, for each occurrence of the task, the offset and the access size to be applied on
the shared buffer. Figure 3 shows a surface made of two system agents (a split and a join),
connected to one producer p and one consumer c. Productions and consumptions are indicated
along the communication links. On the right side, we represent the corresponding shared buffer
@0 and the different accesses made by the user agents. The buffer has a length of 32 elements,
and is partially updated by each occurrence of p, starting at address 0 for p0, 4 for p1, 8 for
p2 and 12 for p3. The pattern is thereafter repeated for the next occurrences. Consumer c is
given as well. At the bottom of the figure, we show the scheduling graph for tasks p and c.
Nodes represent the task occurrences and the edges the dependencies. Dependencies can be
implicit (between two consecutive occurrences of the same task), explicit (two different tasks)
or directed by the producer-consumer pattern (for example, occurrence p4 requires c12 to write
in the first part of the buffer to avoid overwriting unread data). A direct mapping is done
between this scheduling graph and the access patterns.

This direct mapping is illustrated in Figure 4: a single split agent is connected to one
producer p and two consumers a and b. On the right side is the complete Sigma-C source code
of consumer b. The interface section declares one input port and the spec section indicates
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that the input port receives two data each time the start function is fired up (which happens
at each occurrence). Within this function, a read access is made to the input port, aliased to i.
A representation of the runtime access table is given for the input port of b. It indicates that
when executing the start function at occurrence number 2, the i alias (and therefore i[0]) points
to the twelfth element of the shared buffer. This table is represented in a slightly different way
in the runtime, using increments instead of offsets. This example preserves the equivalence
of pointer as alias i always points to a contiguous memory space of size 2. This is a direct
consequence of the production and consumption quantities of the split agent and its consumers
that divide each other.

Figure 4: From the Sigma-C source code to the runtime access table.

Figure 5 illustrates what
happens when such con-
ditions are not met and
the equivalence of pointers
(EoP) is broken. On the
left part is the application
graph with a surface made
of six system agents. On
the right part we represent
the different accesses onto
the shared buffer. This
buffer has a size of 32 el-
ements and is equally di-
vided into 4 parts, fol-
lowing the productions of
agent p. Below the buffer,
we represent the memory
access positions for dif-
ferent agents. Each ac-
cess has a number giv-
ing the order (this corre-
sponds to the occurrence
number, starting from 1). For example, the first access of agent S0 is made at offset 0, then
at offsets 4, 16 and 20. According to this, we calculate the expected offsets for the agents
connected after S0. At the end of the surface, consumer c follows the access pattern given at
the bottom of the figure. This incremental method is also used by the algorithm in charge
of calculating the access patterns within the compiler. Figure 5 shows two compilation cases
regarding EoP: branch S0-J0 accesses 8 elements at offsets 0 and 16, in which c is always able
to read 2 contiguous elements, whereas branch S1-J1 leads to sparse memory sections (red sec-
tions on the figure). Indeed, the memory space attached to the third occurrence of agent S1 is
composed by two sections: two elements starting at offset 14 and one element located at offset
24. Non contiguous sections also refers to the problem of data alignment, in which memory
operations are efficient if data is located at a memory offset that is equal to some multiple
of the word size. In this example, EoP is broken by the fact that S1 consumptions do not
divide S productions (same for J1 and S1). On the figure, system agents that are connected to
agents whose consumptions divide productions are in violet, and in orange otherwise. As for
the compiler’s algorithm, we consider each system agent and compare its output productions
with the consumptions of the ports it is connected to. Different situations are then handled.

The equivalence of pointers is always preserved when the consumptions divide the produc-

Data Reorganization for Many-cores Cudennec, Dubrulle, Galéa, Goubier and Sirdey
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Figure 5: Equivalence of pointer with a consumer connected to a system surface.

Figure 6: Reorganizing the producer writing pattern to keep the equivalence of pointer.

tions (whatever the system agents are). Other configurations generally do not work as this.
However, some of them can be slightly modified in order to get the EoP property back. These
modifications are made by the compiler and work as presented in figure 6 in which the split
agent productions are not written sequentially (as in the top diagram), but instead a contiguous
space is reserved to each output port (bottom diagram).

The shared buffer size is calculated while compiling the system surface. The optimal size
is the minimum size that allows a maximum degree of parallelism (giving enough space for
producers to write while consumers read). However, due to memory restrictions at run time (at
least in embedded systems), the buffer size can also be seen as a tradeoff between parallelism
and memory footprint. Usually, a good guess is to use the least common multiple of the sum
of the productions and the sum of the consumptions.

DMA Micro-Code Generation. Shared buffer compilation is tightly coupled with the
targeted hardware architecture: to be efficient, agents connected to the same system surface
have to be mapped [9] onto cores that share a physical memory (let’s call it a cluster). With
both complexity of applications and many-core memory hierarchies, some surfaces may not
find a cluster and have to be split among them. Several many-core systems offer DMA engines
to move data from one cluster to another. In the Sigma-C compiler, a set of basic surfaces
have been identified (such as split-join), and it is possible to generate the corresponding DMA
micro-code. This micro-code can either be made of nested loops (up to 3 if 3D DMA engine),
or a sequence of indexes, which is better regarding performance.
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User Code Generation. Whenever it is not possible to calculate access patterns onto a
shared buffer, neither a DMA micro-code, the compiler falls back into a safe transformation
of system agents into user agents. A genuine Sigma-C source code is generated from system
parameters attached to the remaining system agents. This source code is merged to the project
thanks to iterative compilation. This simple strategy ensures to find a solution in complex
situations, however this leads to the use of one buffer and data copies per communication port,
which is far from being efficient.

4 Experiments

In this section, we evaluate the shared buffer and the user agent compilation strategies for
three synthetic applications and an industrial motion detection application. Experiments are
conducted over the instruction set simulator (ISS) of the Kalray MPPA 256-core processor.
This processor is made of 16 clusters interconnected by a dual torus network-on-chip, each
cluster being composed of 16 cores and a shared 2 MB scratchpad memory. The ISS is an
accurate simulator that mirrors the architecture behaviour, down to the core registers. Synthetic
applications include a simple system surface made of 2 successive identity agents, a surface of
cascading split agents (7 split agents organized in 3 levels, each split having 2 outputs) and
a simple matrix transposition surface (a split reading line by line connected to a join reading
element by element).
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Figure 7: Instruction Set Simulator cycles are given to complete one appli-

cation cycle. We compare applications compiled with the user agents strategy

(USR) with the shared buffer strategy (SEQ). For each application, the repre-

sentation is normalized to the maximum value. Smaller is better.

The motion detection
application takes two im-
ages and draws rectan-
gles that highlight parts
that have changed. In-
put images are both split
thanks to 2 duplicate
agents within 8 process-
ing pipelines made of
6 user agents and a du-
plicate agent. Finally,
3 join agents rebuild the
resulting image. When
compiling this applica-
tion, 11 system agents are
transformed into shared
buffers, while the 2 re-
maining, part of those in
charge of rebuilding the
image, are transformed
into user agents.

In these experiments,
we evaluate the time needeed
to process a piece of data,
corresponding to the com-
plete cycle of the application. This includes all user processings and data reorganizations.
Figure 7 shows the number of simulation cycles (one ISS cycle is 2.5ns) needed to perform one
application cycle, for the applications compiled in both user (USR) and shared buffer (SEQ)
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modes. The general observation is that shared buffers significantly improve performance for all
the applications. This is particularly true for complex system surfaces such as the split cascade
(the identity application is quite obvious and should be read as a test case). The industrial
motion detection application also benefits from shared buffers by running 1.5x times faster.
This also demonstrates that even if all the algorithm complexity stands within the user code,
data reorganization plays a key role in the overall performance.

5 Conclusion

Data reorganization can be a major issue while running applications onto may-core processors,
due to the complex memory movements it involves. Dataflow programming languages transpar-
ently manages communications, but at the price of relying on a compiler that efficiently works
on it. In this paper we focus on the use of shared buffers and the calculation of memory access
patterns. This strategy has shown to be efficient while targeting the 256-core MPPA processor,
as it is possible to use shared physical memories. The compiler is also able to switch back to
a micro-code generation for a DMA engine, or to a user source code generation. Experiments
show expected improvements over regular data reorganizations, especially in presence of large
system surfaces and complex reorganizations. It also improves performance in the context of
the motion detection application (an industrial test case for the MPPA processor) that runs up
to 1.5x times faster. Some future works can focus on generalizing the shared buffer strategy to
all system agent combinations, regardless of their productions and consumptions.
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