J Heuristics
DOI 10.1007/s10732-014-9241-6

The robust binomial approach to chance-constrained
optimization problems with application to stochastic
partitioning of large process networks

Oana Stan - Renaud Sirdey - Jacques Carlier -
Dritan Nace

Received: 19 January 2012 / Revised: 28 May 2013 / Accepted: 19 February 2014
© Springer Science+Business Media New York 2014

Abstract In this paper, we study an interpretation of the sample-based approach to
chance-constrained programming problems grounded in statistical testing theory. On
top of being simple and pragmatic, this approach is theoretically well founded, non
parametric and leads to a general method for leveraging existing heuristic algorithms
for the deterministic case to their chance-constrained counterparts. Throughout this
paper, this algorithm design approach is illustrated on a real world graph partitioning
problem which crops up in the field of compilation for parallel systems. Extensive
computational results illustrate the practical relevance of the approach, as well as the
robustness of the obtained solutions.

Keywords Chance-constrained optimization - Heuristic design - Graph partitioning

1 Introduction

In this paper, we consider optimization problems of the following general form:

rr}cin g (@) (CCP)
st. P(G(x,£)<0)>1—¢

0. Stan (X)) - R. Sirdey

CEA, LIST, Embedded Real Time System Laboratory, Point Courrier 172,
91191 Gif-sur-Yvette, France

e-mail: oana.stan @cea.fr

J. Carlier - D. Nace

UMR CNRS 6599 Heudiasyc, Université de Technologie de Compiegne,
BP 20529, 60205 Compiegne, France

Published online: 09 March 2014 @ Springer

O. Stan et al.

In the above model, x € R" is the decision variable vector, & € 2 —> RP represents
a random vector and g : R” — R is the objective function. We suppose that the
probability space is (§2, X',), with £2, the sample space, X, the set of events, i.e.
subsets of £2, and PP, the probability distribution on ¥. G : R* x RP? — R is the
constraint function, 0 < ¢ < 1 is a scalar defining a prescribed probability level and
P(e) is the probability measure on the set X.

Introduced in the seminal work of Charnes et al. (1958), chance-constrained pro-
grams have been extensively studied under diverse flavors with many different solution
techniques. Since even for simple cases (e.g. linear programs) problem (CCP) may
be extremely difficult to solve, the vast majority of existing approaches model the
problem by making particular assumptions about the distribution of the stochastic
parameters (usually assuming either or both independence and Gaussian distribu-
tion). However, since in many real world situations these assumptions are not veri-
fied, another approach consists in approximating the chance constraints, such as in the
sample-based approach, which makes use of experimental data and, more importantly,
requires no assumptions on the distribution of the parameters. We propose a non para-
metric sample-based method which takes advantage of basic results from statistical
testing theory, remaining flexible and applicable within a heuristic framework to real
applications in which uncertainty can arise.

Moreover, by directly exploiting the available experimental data, without any model
assumption, and by making use of existing algorithms developed for the deterministic
case, our approach can be adapted to a wide range of optimization problems, without
any major difficulty of integration in terms of both software engineering and execution
times.

In order to illustrate our general approach, we will consider a particular problem
arising in the field of compilation for real-time embedded systems, the partitioning of
process networks on a clusterized parallel architecture. This problem is an extension
of the more abstract problem of graph partitioning, for which the deterministic version
is known to be NP-hard (Garey et al. 1976). The specific class of partitioning problems
considered in this paper consists in assigning the weighted vertices of a graph to a fixed
set of partitions, in order to minimize the sum of costs for edges having their extremities
in different partitions, without exceeding the limited capacity of each partition and by
taking into account the uncertainty affecting the vertices weights. Known for the single-
dimensional deterministic case as the Node Capacitated Graph Partitioning problem
(Ferreira et al. 1998), this problem has, to the best of our knowledge, received little
attention from the stochastic programming community.

For solving the chance-constrained version of the capacitated graph partitioning,
we applied a new method which consists in combining sampling with an existing
randomized greedy heuristic, described in Stan et al. (2012) and which has proved to
be reasonably efficient for the placement of the processes in the deterministic case.

As shown in the sequel, the proposed heuristic (greedy algorithm) consists in provid-
ing, with a preset level of confidence, more robust solutions for the above-mentioned
problem.

The remainder of this paper is organized as follows: Section 2 presents other related
works and discusses the motivations and the basic idea behind our approach. After-
wards, we report the basic results of statistical hypothesis testing theory that we use

@ Springer

The robust binomial approach

and the general sample-based method of resolution we propose. Section 3 is dedicated
to our application case. After a formal definition of our problem and a survey on exist-
ing methods for graph partitioning, we briefly recall the randomized greedy algorithm
our approach is based on and present our stochastic resolution strategy. Experimental
results are provided and analyzed in Sect. 4. Finally, some concluding remarks and
further research directions are discussed in Sect. 5.

2 Stochastic approach

As one may expect, chance-constrained optimization problems are inherently difficult
to address and although this class of problems have been studied for the last fifty years,
only a few advances towards practical resolution methods have been reported. Among
the main reasons that make chance-constrained programs computationally intractable
in the general case are their combinatorial nature, the possible non-convexity of the
feasible set and the difficulty to integrate multi-dimensional complex probability dis-
tributions.

Before presenting the main contributions of this paper, the next section provides an
overview of the existing resolution approaches to chance-constrained programs with
an emphasis on other heuristics methods.

2.1 State of art: chance-constrained optimization

Among the wide range of literature on the subject, there are a lot of theoretical studies
dedicated to the convexity of chance-constrained. This branch of research focuses
on finding convex restrictions to the space of feasible solutions such that standard
methods can be then applied for a more efficient optimization. For instance, it has
been shown that the only generic case for which the difficulties encountered when
solving chance-constrained programs can be overcome, is the normal distribution. We
may refer the reader to Prekopa (1995) for theoretical background and an extensive
list of references.

Other approaches, from the field of robust optimization, consist in proposing, by
relaxation techniques, equivalent deterministic programs to chance-constrained prob-
lems. However, these methods can be applied only for particular classes of problems,
such as linear (Bertsimas and Sim 2004), semidefinite or quadratic programs (Ben-
Tal and Nemirovski 1999) and the probabilistic considerations are accompanied by
restrictions on the structure of the uncertain vector £ (e.g. independence of the com-
ponents).

Another exact approach consists in supposing that the probability distribution is
known, discrete as well as having a bounded support, and subsequently solving the
obtained combinatorial problem (Dentcheva et al. 2000). An example is the model
used in Gaivoronski et al. (2011) for solving the quadratic knapsack problem with
probability constraints which, at first view, seems identical with the formulation we
propose in this paper. Although the structure is similar, this model makes the assump-
tion that the distribution of the random constraint matrix m x n is known and has the
form D" 4.0 pada, wWith D" 4 o pa = 1, 2 the event set and §; the Dirac distribution

@ Springer

O. Stan et al.

centered at point & € R™*”, Under these conditions, for example, an equivalent to a
linear chance-constrained program is the following mixed integer linear programming
(MILP):

min ¢!x
st. Ax <b+ ({1 —xa)L, Aef
D> paxa=(l-¢)

Aef2
xa €{0,1}, A e .

in which ¢ € R” is the cost vector, x € R”" is the decision variable vector, x4 € R™
is a vector of binary variables and L is a suitable large problem-dependent constant.

Other methods for finding feasible solutions to this kind of optimization problems is
through sampling (Calafiore and Campi 2006; Pagnoncelli et al. 2009). These methods
are also making different assumptions on the model and distribution of the uncertain
data and furthermore the solutions found are often highly conservative.

Actually, since dealing with uncertainty in optimization problems is highly com-
plicated and difficult, the approaches that guarantee to find optimal solutions are more
appropriate when solving small size instances and they also require a lot of computa-
tional effort. In contrast, approaches based on heuristics or metaheuristics are capable
of finding good and even optimal solutions to problem instances of realistic size, in a
smaller computation time. We refer the reader to Bianchi et al. (2006) for an exten-
sive survey on the existing metaheuristics for dealing with stochastic combinatorial
optimization problems.

However, to the best of our knowledge and as pointed in the survey (Bianchi et al.
2006), there are only a few heuristics proposed for solving the problem we consider
here, formulated in (CCP), a program without recourse with uncertainty affecting the
constraints.

In Loughlin and Ranjithan (1999), the approach consists in using a Monte-Carlo
simulation in a genetic algorithm fitness function. For each uncertain parameter, a
statistical distribution must be obtained or assumed and the sampling is carried out
using either Monte-Carlo sampling or Latin hypercube sampling. If the estimated
reliability of meeting one or more constraints is less than the prescribed probability
level, the current solution is penalized. As such, the use of sampling is different from
our approach and no theoretical guarantees are provided for establishing the number
of necessary realizations.

Another method for solving chance-constrained programs, suggested in Aringhieri
(2004), combines a tabu search heuristic with simulation. The evaluation of the fea-
sibility of a solution is realized using two different methods. The first one consists in
randomly generating 7' values for each random variable and computing the average
over them in order to evaluate the constraints. The second method uses the central
theorem limit to obtain a normal approximation of a sum of independent random
variables. Although the first method is sample based, no statistical tools are used in
order to determine and reduce the 7', which is the dimension of the sample employed

@ Springer

The robust binomial approach

to estimate the constraint feasibility. Furthermore, the second evaluation makes the
simplifying assumption of independence of the random variables.

Another tabu search heuristic is proposed in Tanner and Beier (2007) for solving
joint chance constrained stochastic programs with random parameters having discrete
distributions. The main focus of the paper is on exploiting the scenario structure:
identifying subsets of scenarios that are more important in finding good solutions,
adding or removing scenarios at each iteration step. Though the ideas presented are
interesting, it seems that the maintenance of the set of scenarios to work with can be
computationally demanding.

A beam search heuristic, based on the classical Branch and Bound scheme, is
suggested in Beraldi and Ruszczynski (2005) for solving chance constrained programs
with integer variables. In order to evaluate which nodes to explore further, the heuristic
is using the lower bound of the optimal solution, computed using the notion of p-
efficient point. It is however worthwhile mentioning that the definition of p-efficient
point is employing the conditional marginal distribution function, and thus this method
supposes as known and calculable the distribution of the uncertain variables.

2.2 Basic ideas and motivations

Most of the studies mentioned above are making assumptions (e.g., existent analytical
form of the distribution, independence of the random vector components) which are
rather either restrictive, or difficult to verify or not always adequate to represent the
uncertainty of real-life applications.

We have found that, in many real world situations, the probability distribution is
not explicitly known or its integration is too difficult. One example shown in this
paper is given by the execution times of medium-grained computer programs which
are random variables difficult to fully describe analytically. However, in practice, we
have at our disposal some observations for the uncertain data, obtained, for example,
when performing tests on the target architecture. These observations can be directly
employed in order to construct an equivalent optimization problem, more robust and
compatible with the variations of the real data, with the condition that the available
sample is sufficiently representative of the entire distribution. !

To the best of our knowledge, the only tractable approximation of the probabilistic
constrained programs, which does not impose any restrictions on the structure of the
uncertain data (in particular with respect to random vector component independence),
is the one derived from the general scenario approach.

The optimization problem (CCP) can be then approximated by the convex program:

min g (x)
X

st. G(x,€D)y<0; i=1...NS (RCPys)

I An assumption that can be in practice checked, to some extent, using static program analysis techniques.
An assumption which also relies reasonably on the expertise of test engineers in terms of designing validation
cases representative of real-world system operation.

@ Springer

O. Stan et al.

where M| .., £NS) jsasample of size N S of independent and identically distributed
observations of £ and €@ is a realization of £ ©). Let us recall that £ is a random vector
and that no assumptions are required on its joint probability distribution, in particular
with respect to the independence of its components. The scenario approach searches
for solutions which satisfy the probabilistic constraints for all the realizations of £. The
acronym RC Py refers to the fact that this new formulation is a robust program where,
instead of having m constraints, we have NS x m constraints. As such, this approach
provides a conservative approximation to the original program, by finding feasible but
suboptimal solutions. Theoretical justification of this approximation scheme can be
found in (de Farias and Van Roy 2003; Calafiore and Campi 2005).

Our idea is to take advantage of the experimental data and revisit the scenario
approach using elementary tools from statistical hypothesis testing theory and directly
exploiting the available sample.

Also, in order to face the computational complexity which is one of the major
drawbacks of the sample-based method, we propose a general way of integrating it in
almost any heuristic algorithm. In this manner, even if the application case requires a
high level of precision for the probability constraint threshold ¢, which involves the
analysis of a large sample, our approximation remains computationally tractable and,
as we shall see in the next section, statistically significant.

Our algorithm design methodology consists in leveraging existing heuristics for the
deterministic case without significant destructuring them (i.e. at small cost in terms of
software engineering) and with acceptable performance hit. Furthermore, this method
could be applicable to pretty much any such algorithm.

Hence, the contribution of this paper is more centered on demonstrating the practical
relevance of our redesign-for-the-stochastic-case methodology than on demonstrating
the intrinsic quality of the algorithms involved.

2.3 Statistical hypothesis testing

Before presenting the statistical results on which our method is based, let us introduce
the following notation:

X Decision vector

& Uncertainty vector

Po P(G(x,§) <0)

gD . gWNS) i.i.d. random variables corresponding to N S observations of &
£ realization of observation &)

Xi Bernoulli variable equal to 1if G (x, £¥) < 0and 0 otherwise.

So the random variable y = ZIN:SI xi follows, by definition, a Binomial distribution
with parameters NS and pg (x ~ B(N S, po)). Let us now consider a realization x of
x. If x (corresponding to the number of times the inequality G (x, &) < 0 is satisfied
on a sample of size N S) is sufficiently large (for instance, larger than k(N S, 1 —¢, «)),
we say that the constraint P(G(x, §) < 0) > | — ¢ is statistically satisfied.

@ Springer

The robust binomial approach

Table 1 Examples values for

k(N S, 0.90, 0.05) in function of NS kS, 0.90, 0.05)
NS 10 B

20 -

30 29

40 38

50 48

100 95

1000 915

The value of the threshold k(N S, 1 — ¢, @) (to which, for simplicity sake, we will
refer, from now on, as k) will be chosen so that the probability we accept the constraint
by error is smaller than a fixed «, in which case py is strictly smaller than 1 — &:

P(x zk) =« (D

For any fixed pg < 1 —¢,P(x > k) is smaller than P(x’ > k) when x'~B(N S, 1 —
¢). So we can choose k such that P(x' > k) < a.

Thus, given x, the parameter « can be interpreted as the type I error of the statistical
hypothesis test:

Hy :P(G(x, &) <0) <1—¢
H :P(Gx,&) <0)>1—¢

Hp is (intuitively) the hypothesis which we wish to reject only if we have statistically
significant reasons to do so (which is the correct setting if we wish to confidently
achieve robustness), as, recall, it is well known that the two hypothesis of such a test
are not symmetric.

Hence, we can conclude, with a confidence level of at least 1 — «, that pg > 1 — .

Table | shows some minimal values for k in function of the sample size NS, ¢ =
0.10 and @ = 0.05. For example, for establishing that an inequality holds with a preset
probability level of 1 —e = 0.90 and with a confidence level 1 —a = 0.95, for a sample
of size 50, the threshold k needed is at 48 and P(x > 48|po = 0.90; 50) =~ 0.034. It
should also be noted that, for a practical use, the parameters ¢ and « should be of the
same order of magnitude.

Table 2 gives a deeper insight about the minimal number of constraints to respect in
function of ¢, the prescribed probability level and «, the confidence level when N S, the
size of the sample, is equal to 30 (the folklore minimal size for which a population is
considered statistically significant), 100 and respectively 1000. It should be remarked
that for respecting higher probability and confidence levels, a more important sample
size is needed but however, a sample size of 1000 seems sufficient even when ¢ = 0.01
and o = 0.01.

We can also establish in advance the minimal size of the sample required for a fixed
level of the probability 1 — ¢ (with ¢ €]0, 1) and a prespecified confidence level 1 — «
(with @ €]0, 1]). In particular, if po = 1 — ¢ and:

P(x =NS) >«

@ Springer

O. Stan et al.

Table 2 Values of k in function

NS =30 NS =100 NS = 1000
of @ and ¢
& 0.01 0.05 0.1 0.01 0.05 0.1 001 0.05 0.1
o
0.01 - - - - 99 96 996 965 921
0.05 - - 29 - 98 95 995 961 915
0.1 - - 29 - 98 94 994 959 912

then we can affirm that the sampling size is insufficient (which is true for NS = 10
and NS = 20, see Table 1). The above formula provides an easy way to determine
the minimal number of realizations that need to be drawn in order to statistically
significantly («) achieve the desired probability level (). We remark that its compu-
tation does not depend on the number of decision variables as in Calafiore and Campi
(2006), nor on complicated complexity measures from Vapnik—Chervonenkis theory
as in Vidyasagar (1999).

2.4 Chance constraints and sampling

The statistical theory above can be applied for obtaining a statistically significant
approximation model to the initial program (CCP). In order to obtain a relevant equiv-
alent program, we make the following assumptions about the random vector &, repre-
sented by a sample of size N S of observations & @, withi =1,..., NS:

Assumption 1 NS, the size of the sample for the uncertain vector &, is sufficiently
representative and finite.

Assumption 2 The sample for & is composed of independent and identically distrib-
uted (i.i.d.) observations: 5(1), el é(NS).

We would like to attract the attention of the reader that we are not treating time
series. As such, our assumption of independence is on the different observations of the
random vector and not on its components which (as already stated) can be dependent.
Additionally, these assumptions remain quite general. As many previous studies do
not mention, they are also necessary in the case of methods using a probability model,
as the model itself must be validated e.g. on a Kolmogorov—Smirnov hypothesis test
using an i.i.d. sample of experimental data.

Moreover, the first assumption is not very restrictive, since even if the number
of initial observations is not sufficient, we can resort to statistical methods for re-
sampling, such as bootstrapping (Efron and Tibshirani 1994). However, it is important
that the initial sample is representative of the distribution. We underline that we are
not concerned in this paper by the acquisition of representative experimental data.
This stage has to be realized a priori at system level, for example during the validation
stage and needs to be done regardless of the method used for solving the chance-
constrained programming. If we take the case of a video encoder for example, the
validation tests should provide representative samples of video sequences which can
be used for building our approximation program. Afterwards, in order to validate the

@ Springer

The robust binomial approach

robust approach, we need other video samples, statistically identical but, of course,
different from the first ones.
Let define the binary variable y; for realization &' :

. { 1ifG (x,E0) <o,
=

0 otherwise.

Since the sum vazsl xi follows a Binomial distribution of parameters N .S and pg
(again, by construction), we can determine k(N S, 1 — &, «). Therefore, we can use
Xi» the realization of the variables y;, and replace the constraint probability

P(Gx,85) <0)=1-¢
to obtain the (RBP) formulation, equivalent to (CCP):

n}vin g x) (RBP)

NS
st D % = k(NS.1-¢a)
i=1
G, ") < (1 —7)L; i=1,...,NS)
Xi € {0, 1}; i=1,...,NS

The first constraint assures that the number of constraints which are satisfied for the
given sample are superior to the threshold &, fixed in advance in function of NS, ¢
and «. Constraints 2 verify the respect of the constraint for each realization i, making
the link between x, £ and ;, with L a constant of large size, depending on the
problem structure but generally easy to find. For example, for a knapsack constraint
> wix; < C with w; > 0 the weights of the m items to be placed, supposed
uncertain, x; binary variables and C the maximal capacity allowed, L = 37" | w;.

Minimizing the objective function g(x) under these constraints is equivalent to
solving the initial program (CCP) with a confidence level of at least 1 — «. We again
emphasize that the validity of this approximation is independent of any particular
assumption on the joint distribution of the random vector &, in particular with respect
to inter-component dependencies. This is appropriate especially for the cases when
such assumptions are not always verified.

In practice, although it is well illustrated on that problem, it should be stressed out
that our approach is not really appropriate in a mathematical programming setting,
since, for example, the reformulation of an original linear problem contains many
binary variables and it is more complex to deal with. However, the method can be
easily and efficiently adapted to heuristic approaches. Furthermore, we can make
use of the existing heuristic algorithms developed for the deterministic version of a
problem and extend them for treating the stochastic case.

@ Springer

O. Stan et al.

Table 3 General schema for a constructive algorithm

Deterministic Stochastic
Input: g and G functions
Input: &;,...,Ens, €, O
1: R={r: residual decisions}
2: §=0
3: while R £ 0 do

Input: g and G functions, &
1: R={r: residual decisions}
2: §*=0
3: while R # 0 do
D={reR:0(r) =True}

4.

! 4- D={reR:0sr)=True
5: if D # 0 then 5: iny{é@then v :
6: d* = argmin g(S* U{d : : in g(s*

argmi g(s*u{d}) 6: d* = arginin g(s*uidy})

7: S*:S*U{d*} 7: S*:S*U{d*}
8: R=R\{d*} 8: R=R\{d*}
9: else 9: else
10: bfeak; 10: break;
11: end if 11: end if
12: end while 12: end while
Output: §* Ol;(pﬂtl §*

As we shall illustrate in the sequel through the example of graph partitioning, any
constructive algorithm relying on an oracle for testing solution admissibility can be
turned into an algorithm for the stochastic case by modifying the said oracle so as to
count the number of constraint violations and take an admissibility decision based on
the threshold k.

Table 3 shows, as an example, the general structure of a greedy algorithm for
the deterministic case as well as its adaptation for the stochastic case. The input is
problem specific and consists, for the deterministic case, in giving the structure of the
objective g, the constraint function G, the parameter vector £ as well as the domain
of definition for the decision variables. For the chance-constrained version, in which
we consider & as random, we also specify a sample of size N S for &, the probability
level ¢ and in order to apply the robust binomial approach the confidence level «.
In both cases, R represents the set of decisions not yet made (or residual), D the
set of admissible decisions, g(S) the solution value for solution S, d* the current
optimal decision and S* the optimal overall solution, build in a greedy fashion. While
there are residual decisions to be made, an oracle is evaluating them for deciding
the admissible decisions. Between the admissible decisions, only the one with the
greatest improvement on the optimal solution value is kept and the overall solution S* is
updated. If no admissible decision is found by the oracle, the algorithms stops. As seen,
the only major difference when considering chance constraints is in establishing the set
of admissible solutions, by using a stochastic oracle ; instead of the original one &
(line 3). The deterministic oracle is establishing the admissibility of a residual decision
by verifying the respect of the constraints, while the stochastic oracle is applying
the robust binomial approach and it verifies if a residual decision is stochastically
significant with a confidence level of 1 — « for the given sample by comparing the
number of constraints respected by the sample with the threshold k, established in
advance in function of N S, ¢ and « (see the procedures for & and O in Table 4).

Of course, any optimization algorithm relying on an oracle to determine whether
or not a solution is admissible (e.g. a neighboring method) can be turned into an

@ Springer

The robust binomial approach

Table 4 Deterministic oracle versus stochastic oracle

Deterministic oracle & Stochastic oracle O
Input: r€R,G, & Input: r€R, G, & ..., Exs
1: if G(r,&) < 0 then Input: k(NS,¢e,a)
2: return True 1: nbRespConstr =0
3: end if 2: fori=1to NS do
4: return False 3: if G(r,&) <0 then
Output: True, False 4: nbRespConstr+ +
5: end if
6: if nbRespConstr > k then
7: return True
8: end if
9: end for

10: return False
Output: True, False

algorithm solving the stochastic case using the same method. For example, since the
only difference between a generic local search method for the deterministic case and
its adaptation to the stochastic version consists in deciding which one of the neighbors
of the current solution is a possible admissible solution, the deterministic oracle has
to be replaced by a stochastic one. The structure of the oracles &' and & could be the
same as before or they could be implemented more efficiently, using the fact that the
neighbors are obtained from a current admissible solution for the deterministic and,
respectively, the stochastic case.

Such a context assures a practical and tractable implementation of our approach
even for cases when a very high number of constraints is demanded.

These situations can arise when ¢ is set to be really small (e.g. less than 107>)
and thus, it is required to have a large minimal size of the sample. For example, a
problem with probability level & = 107> and, accordingly, a confidence level o« =
1072, requires a sample of minimal size 10® which, although large, is not prohibitive.
Additionally, in order to obtain a more rapid computation, the operation of counting
the constraint violations can be parallelized without major effort?.

In order to test our approach, we applied it to the problem of stochastic partitioning
of large process networks, described in the next section.

3 Partitioning of process networks: an illustrative example
3.1 Experimental methodology

As already emphasized, this paper is centered in demonstrating the practical relevance
of solving a stochastic problem by integrating the robust binomial approach into an
existing heuristic developed for the deterministic case. As such, we are mainly inter-
ested in showing that having at our disposal an algorithm for the deterministic case, it

2 An one line OpenMP pragma will do the trick.

@ Springer

O. Stan et al.

is relatively easy in terms of software engineering (notably) to adapt it to the chance-
constrained version of the same problem. In the latter case, the solutions found are of
consistent quality (with respect to the ones provided by the original algorithm) and
more importantly, guaranteed to be robust to data variations with a confidence level
of 1 — o and a required probability level of 1 — ¢.

Since for partitioning networks of processes we have already developed a multi-start
constructive algorithm, we took advantage of the existing implementation in order to
adapt the admissibility oracle and solve the stochastic case.

In order to have a self-contained paper as well as for comparison purposes, the
original greedy algorithm for the deterministic problem is given in Sect. 3.6 and
the associated computational results are presented in Sect. 4. Therefore, we are not
claiming that this existing algorithm is a best-in-class graph partitioning algorithm.
What we do claim is that, using a slight adaptation of this algorithm, we can easily
obtain robust solutions. Thus our experiments focus on showing that the algorithm
for the stochastic version provides results consistent with those of the original one
and attempt to quantify the “price of robustness”. We also claim that our method for
leveraging an algorithm solving the stochastic case from one for the deterministic case
is generally applicable.

3.2 Problem statement

We begin by a formal description of the application case considered in this paper for
testing our approach.

The process networks partitioning problem can be stated as follows:

Let G = (V, A) beadirected graph where the set of vertices V = {vi, v2, ..., vy}
represents the tasks and the arcs (v, w) € A correspond to the channels of a process
network. Let N be the set of disjoint nodes on a parallel architecture on which we
want to map our graph. The resources (essentially memory footprint and computing
core occupancy resources) are given by the set R and the capacities of the nodes are
given by the multi-dimensional array C € R*!RI, For the sake of simplicity, this study
will be limited to the case of homogeneous nodes, hence we suppose all nodes have
the same capacity.

Let us also define two functions. s : V —> RTIRI s defined as a size function
for the vertex weights, with s(v), being the weight of vertex v for resource r. The
second function, defined for the edges, is the affinity function ¢ : A — RHRl where
q((v, w)) > 0 denotes the weight of edge (v, w) € A and g((v, w)) = 0 if no edge
(v, w) exists between the vertices v and w. In the remaining of this paper, we will
use the following simplified notation: Q,,, = g((v, w)) for each arc (v, w) € A and
Suyr =s(),,forr e Randv e V.

The partitioning problem we work on consists in finding an assignment of vertices
tonodes, denoted f : V — N, that satisfies the capacity constraints for all resources:

z Syy < Cr, VneN,VreR, (3)
veV:f(v)=n

@ Springer

The robust binomial approach

by minimizing the objective function:

> Quu

(v.w)eA: f)#f (w)

As described below, a qualitative analysis of the sources of uncertainty (mainly
the execution times), motivates our choice for a model in which the weights of the
vertices, directly proportional to the execution times, are dependent random variables.
It also shows the difficulty of obtaining an analytical description of the distribution of
execution times and justifies our recourse to a non parametric sample-based approach.

Hence, the stochastic case we consider here is relatively new, even if the determin-
istic graph partitioning has already been extensively studied. The results of a survey
on the main related works are described in a later section.

3.3 Uncertainty sources

In the problem of process networks allocation, one of the main sources of uncertainties
lies in the intrinsic indeterminism of execution times for computing kernels of inter-
mediate granularity. This indeterminism is due in part to some of the characteristics
of the processor architecture such as the cache memories and memory access con-
trollers and is also inherently due to data dependent control flows (conditional branches
and loops).

Even if it is reasonable to assume, in embedded computing, that the probability
distributions of execution time have a bounded support (no infinite loops), we have
to cope with the fact that the distributions are intrinsically multimodal. For example,
for the computing kernel “for i = 1 to n if x then S; else S»” with n taking values
between 1 and N, S1 and 7 being two linear sequences of instructions, the distribution
has 2N modes. Hence, it is difficult to model these probabilities laws through usual
distributions such as the normal or uniform ones, which are unimodal. Furthermore,
in the case of a process network, we cannot overlook the problem of dependency
between these random variables. An easy example consists in a target tracking pipeline
for which the execution times of each of the pipeline elementary tasks depend, to a
certain degree, on the number of effectively treated targets.

Thus, it is appropriate to assume that the execution times are random variables char-
acterized by complicated multimodal joint distributions, presumably better defined as
unions of orthotopes rather than, a Gaussian or even a mixture of Gaussians, although
we do not build further on this assumption in this paper. As such, it is rather difficult
to fully describe or estimate the parameters for such distributions, even by static pro-
gram analysis or by dynamic analysis (i.e., testing). Nevertheless, a static analysis of
the code could allow us to approximate the support of the probability law and give
us a feedback on the existing modes that have or have not been sampled, i.e. on the
representativeness of the tasks performed.

@ Springer

O. Stan et al.

3.4 State of art
3.4.1 Deterministic graph partitioning

Since the graph partitioning problem and especially the bisection problem (a particular
version of the problem for |N| = 2, also NP-hard) have been of great interest in the
past, many different resolution methods were developed for treating the deterministic
case. There are several surveys (see Fjillstrom 1998; Elsner 1997; Bichot and Durand
2010) resuming the existing algorithms for deterministic graph partitioning.

Due to the NP-hardness of graph partitioning, the literature addressing the exact
resolution of this problem is relatively sparse. Among the most successful exact deter-
ministic approaches are the branch-and-price or column generation methods (Johnson
et al. 1993; Mehrotra and Trick 1997). Interesting results are also obtained in Fer-
reira et al. (1998), in which the polyhedral structure of the problem is analyzed and
classes of strong valid inequalities are included in a branch-and-cut algorithm. We
should also mention the existence of a few approaches exploiting lower bounds for
the problem. Particularly new lower bounds of rather good quality were found using
semidefinite programming (Lisser and Rendl 2003) as well as multi-commodity flows
(Sensen 2001). Nevertheless, these exact methods can handle only relatively small
graphs, being too slow to be applied to larger graphs, with, for example, more than
a thousand vertices. Mainly for this reason, these methods are not adequate to our
application where we have to partition instances with a number of vertices varying
roughly between 500 and 4000 on 16—64 nodes.

Therefore, we turn our attention to heuristics, the usual and more practical methods
for tackling such problems. There are a large number of such methods, either global
or local, that differ with respect to cost (time and memory space required to run the
algorithm) and partition quality, i.e. the optimal solution or the cut size. One of the
earliest and most popular algorithms, due to Kernighan and Lin (1970), originally
proposed for the bisection case, is of quite high complexity (O(|E|) for Fiduccia
adaptation (Fiduccia and Mattheyses 1982) orin the original version O (| E |21 0g(|El)))
(for a graph with | E'| edges) and demands a lot of computational effort for being adapted
to the capacitated generalized problem. Among local metaheuristics, one of the most
used to solve the graph partitioning problem is simulated annealing, mainly because
of its simplicity (Johnson et al. 1989; Kirkpatrick 1984). However, it highly depends
on the structure of the problem and for large sized instances, the required execution
time may become prohibitive. For very large graphs, rather good results were found by
global approaches, such as the multilevel and hierarchical methods (Hendrickson and
Leland 1995; Karypis and Kumar 1998) or the more recent method of fusion—fission
(Bichot 2007).

3.4.2 Stochastic graph partitioning
Previous work related to the stochastic form of the problem treated in the present paper
is quite scarce. Fan et Pardalos studied a problem relatively close to ours: partition the

vertex set of a graph into several disjoints subsets so that the sum of weights of the
edges between the disjoint subsets is minimized, with a cardinality constraint on each

@ Springer

The robust binomial approach

subset and the uncertainty affecting the edge weights. In Fan and Pardalos (2010),
assuming there is no information on the probability distribution other than that the
weights on the links are independent and bounded in known intervals, they formulate
the problem using a robust optimization model, similar to Bertsimas and Sim (2004).
The equivalent linear programming formulation is then solved by an algorithm based
on a decomposition method. In a more recent study, Fan et al. (2011) introduce the
two-stage stochastic graph partitioning, assuming that the distribution of edge weights
has finite explicit scenarios. Having as objective to minimize the expected weight of
edges in the set of cuts over all scenarios, they present a nonlinear stochastic mixed
integer model and propose an equivalent integer programming formulation for solving
the problem using CPLEX. Taskin (2009) study the stochastic edge-partition problem,
where the edge weights are uncertain, and are realized only after the node-to-subgraph
assignments have been made. They introduce a two-stage cutting plane algorithm with
integer variables in both stages and, to overcome the computational difficulties, they
also prescribe a hybrid integer/constraint programming method as alternative.

Also, Barbu and Song-Chun (2003) addresses a graph partitioning problem with
probabilities on the graph edges, using Markov-based techniques related to the simu-
lated annealing method in order to solve a class of image segmentation problems.

The approaches above differ in several aspects from our study. First, in our case,
the problem formulation is not the same, dealing with multidimensional capacity
constraints on the nodes instead of cardinality constraints. Consequently, uncertainty
is addressed in a different manner, the assumption of uncertainty being made on the
weights of the vertices rather than on the weights of the edges. Finally, we remark
that the existing methods are exact and thus, mostly suited for small-size instances of
the problem, the numerical experiments being performed on graphs with at most 100
vertices. On the contrary, for the processes placement problem we are interested in
practice to partition much larger graphs.

3.5 Relative affinity

Before describing the randomized greedy heuristic our stochastic algorithm is based
on, let us recall the notion of relative affinity, initially introduced in David et al. (1991)
(see also Stan et al. 2012 for details).

Let S and T be two disjoint subsets of V.

Definition 1 The affinity of S for T is given by :

S, Ty=" D Qun

(v,w)€d(S,T)

with §(S, T) = {(v,w):ve S;weT}.
It follows that (S, T) = (T, S).

Definition 2 The total affinity of S (similarly for T) is given by

B(S) = a(S, V\S).

@ Springer

O. Stan et al.

(O

Fig. 1 a A graph example; b 2-partition using the relative affinity (David et al. 1991)

(b)

Definition 3 The relative affinity of S for T is defined as

1 1 1
SST)=-a(S,T)| — + ——
v, 1 =gu)(m) * ﬂ(T))

where aéf:q? represents the contribution to the total affinity of S of the edges adjacent

toSand T.

Let us illustrate these notions through a simple example (David et al. 1991) on the
undirected graph shown in Fig. 1a. We suppose that we have only one resource and that
all the vertices have unitary weights and we want to partition the graph into two nodes
of capacity equal to 2. A greedy partitioning using the total affinity would have begun
by putting together the vertices B and C, resulting in a solution of cost 4. Instead, a
greedy partitioning based on relative affinity would match the vertices A and B (and
C and D), with y ({A}, {B}) = y({C}, {D}) = 0.7 and y ({B}, {C}) = 0.6, obtaining
a solution of cost 3 (see Fig. 1b).

3.6 Randomized greedy algorithm for the deterministic case

In order to fully illustrate our methodology for leveraging an existing algorithm solving
the deterministic version of a problem to the stochastic case let us describe our starting
point (which we do not claim to be the ultimate graph partitioning heuristic, emphasis
being made on the leverage-for-the-stochastic-case methodology).

Initially described in Sirdey and David (2009), the randomized greedy algorithm
we are adapting, is based on the relative affinities of admissible assignments and
admissible fusions.

Let W be a set of vertices not yet assigned to a node.

Definition 4 An assignment of vertex v to node n is admissible if it satisfies the
capacity constraints for node n, such that for every resource r € R:

St D, Sur=GC
weV\W: f(w)=n

@ Springer

The robust binomial approach

Definition 5 A fusion between the nodes n and m is admissible if for every resource
r € R:

D D S T o

veVA\W: f(v)=n veVAW: f(v)=m

The assignments are favored over fusions and, when tie-breaking with respect to
relative affinity, the heuristic prioritizes the assignment of vertices with heavier weights
on less loaded nodes and the fusion of the most loaded nodes. We also formally define
the relations of heavier vertex and more loaded node which are being used in the
algorithm for the multidimensional case.

Definition 6 The vertex v is smaller or lighter than the vertex w if:

S S
max — < max
reR C, reR C,

4)
Definition 7 The node 7 is more loaded than the node m if:

1

1
rrnealgc C_r C, — Z Sor | < rrneaI%(C_r C, — Z Sor
veVA\W: f(v)=n veVAW: f(v)=m

The algorithm, to which we will refer as RG_PART, takes as input the set of
unassigned vertices W (initially equal to V), the set of nodes N, the set of resources
R and the vertex weights S,,-. A basic version of the algorithm is given underneath.

Algorithm 1 RG_PART

Input: W, N, R, Sy, foreach {v € V,r € R}

1: Initialization W =V

2: Assign the first min(| V|, |N|) vertices in lexicographic order to the |N| nodes and update the set W

3: Find an admissible assignment (v*, n*) (v* € W,n* € N) cf. Definition 4, if any, with maximal relative
affinity:

v =y{v*h v e VAW : f(v) =n™})

4: Find an admissible fusion (n], n) (n] € N, n3 € N) cf. Definition 5, if any, with maximal relative
affinity:

r=y({ve VAW : f(v) =ni} {v e VAW : f(v) =n3})

5: If yy > y> then assign v* to n* and update the set W. Else merge n} and n}

6: If W is empty or there is neither any admissible assignment nor any admissible fusion, stop. Else, go to
Step 3.

Output: assignment f

Since greedy algorithms tend to sometimes get trapped with poor quality solutions
(due to the fact that the algorithm may, by construction, fail to compensate an early
bad decision), a type of diversification strategy is required. This is the reason why a

@ Springer

O. Stan et al.

randomized version of the algorithm is executed several times (i.e. in a a multi-start
fashion). The randomization strategy consists in executing the algorithm first on the
list of vertices sorted by their decreasing weights (see step 2 of the algorithm and for
multi-resource case, Eq. 4) and several times afterwards using randomized versions
of the list of vertices.

The algorithm being given for the deterministic version of our problem, we can
now turn to the case we are interested in, the one in which the weights of the vertices
are uncertain.

3.7 Randomized greedy algorithm: chance-constrained version

The sample based approach described previously can be easily adapted for solving the
stochastic version of the capacitated graph partitioning problem. All we have to do is
to combine the statistical hypothesis test explained before with the heuristic algorithm
RG_PART by counting the number of constraint violations.

For the stochastic version of our graph partitioning problem, formally stated in
Sect. 3.2, we make the assumptions that the task weights S, are random variables and
that we dispose of a relevant sample of NS independent and identically distributed
realizations of the uncertain vector of task weights. For k = 1 to N S, let 5‘5’;) be the
realization of the k-th observation.

Let us also note the event enr = {X,cy. (y)=p Svor < Cr}. The capacity constraint,
expressed for the deterministic case in Eq. (3), becomes:

p(/\ A en,)zl—s.

neN reR

In order to ensure that the probabilistic constraint is satisfied with a given confidence
level at every step of the algorithm, it is necessary to redefine the notions of admissible
assignment and admissible fusion.

Definition 8 An assignment of vertex v to node 7 is stochastically admissible if the
sum:

NS
Dx@E #a3r: > SN >cyviE S+ > 38>,
k=1 w: f(w)=n’ w: f(w)=n’

is less than or equal to NS — k(N S, 1 — ¢, @), with x(Z,) = 1 if and only if &, is
true.

This calculation can be simplified by using an ad hoc data structure, a boolean bi-
dimensional array of size |N| x NS, denoted ¢, indicating for the partial current
partitioning if, for every node, the sample k has already induced a violation.

@ Springer

The robust binomial approach

Thus, the assignment of a vertex v to a node n is stochastically admissible if:

NS
e kv @ SP+ > 80> < NS—k(NS. 1—¢.a)
k=1 w: f(w)=n’

With the use of the boolean array, the computation of an admissible assignment
increases in complexity linearly, with a factor of NS, compared to the deterministic
case.

If the vertex v is effectively assigned to node n then the boolean array is updated
with:

tn k=t klv @ S0+ > 88 > ¢
w: f(w)=n

Definition 9 A fusion between nodes n and m is stochastically admissible if the sum:

NS
SiEs Y dWeciver: YS9 Y s g,
k=1 w: f(w)=n’ w: f(w)=n vif(v)=m

is less than or equal to NS — k(N S, 1 — &, &), with x () = 1 if and only if the
predicate &y is true.

Analogously, we can simplify &7 by using the same boolean matrix [N| x NS.
Once the fusion is realized, the entries for nodes n and m are updated as follows:

tn k=t klv @ D SW+ > 3P >c)
w: f(w)=n v:f(v)=m

tlm, k] := false

As for the computation complexity, we remark a linear increase with a factor of NS
in comparison to the deterministic version.

Also, since we have to deal with a sample of size N S, we can redefine the way we
compare the vertices and the nodes weights, by taking into account the average over
all realizations as follows.

Definition 10 The vertex v is smaller or lighter in average than the vertex w if:
NS &k <
k=1 SI(JV)]}(V:S] Sl(fr)
max =——— <max —————
reR NS x*C, reR NS x*C,

Definition 11 The node n is more loaded than the node m in average if:

=) <)
1 W F(0)=n Sur 1 . k
ax (Cr Zvev\ f (w)y=n v) - max (Cr ZUEV\W.f(v)fm v)

NS rerR Cy NS

@ Springer

O. Stan et al.

The above definitions can then be easily integrated in the algorithm described
in Sect. 3.6, without any major destructuring. As such, the algorithm for solving the
chance-constrained version of the node capacitated graph partitioning problem, named
RG_PART_STOCH is as follows.

Algorithm 2 RG_PART_STOCH

Input: W, N, R, &,a, NS, 8% foreach {(ve V,r € Rk =1..NS }

1: Initialization W = V

2: Assign the first min(| V|, |N|) vertices in lexicographic order to the |N| nodes and update the set W

3: Find an admissible stochastic assignment (v*, n*) (v* € W, n* € N) cf. Definition 8, if any, with
maximal relative affinity:

yi=y{u*h{ve VAW : f(v) =n*})

4: Find an admissible stochastic fusion (”T’ nﬁ) (n’]‘ €N, n§ € N) cf. Definition 9, if any, with maximal
relative affinity:

r=r(ve VAW: f(v) =nj}, {v e VAW : f(v) =n3})

5: If y; > yo then assign v* to n* and update the set W. Else merge n} and n.

6: If W is empty or there is neither any admissible assignment nor any admissible fusion, stop. Else, go to
Step 3.

Output: assignment f

It should be noted that the only remarkable differences between the algorithm
RG_PART and its stochastic counterpart RG_PART_STOCH are in Step 3 and Step
4 when deciding if the current assignment or fusion is admissible. Additionally, the
algorithm for the chance-constrained case needs as input the N S realizations of S, the
tasks weights for each resource, ¢ the prescribed probability level and « the confidence
level.

By using the statistical hypothesis testing within a heuristic approach, we also over-
come the computational effort of taking into account the uncertainties of the weights
of the vertices. We could even further improve the performances of the heuristic by
parallelizing the computations of admissible assignments and of admissible fusions.

4 Computational results

In this section, we report on the computation experiments of applying the above
sample-based randomized greedy heuristic to the chance-constrained version of graph
partitioning with uncertainty affecting the weights of the vertices. All these experi-
ments have been carried out on a Linux PC workstation, with a 3.80 GHz Pentium(R)
processor, 3 GB of memory and Ubuntu 10.04 as operating system. In the rest of the
section, we report about the benchmark and the random variables used in our com-
putation, different evaluation measures and we discuss the results of the heuristic for
the chance-constrained version in comparison with the heuristic for the deterministic
case.

@ Springer

The robust binomial approach

Table 5 Computational results

of RG_ PART heuristic for Inst. #Vertices #Nodes C Multi
deterministic case: grid Grid 4 x 4 16 4 4 8
problems
Grid 10 x 10 100 5 20 28
Grid 23 x 23 529 14 40 150

4.1 Benchmark and uncertain parameters generation

Since, to the best of our knowledge, there are no probabilistic instances defined for
the graph partitioning problem, we tested our algorithm on two modified sets of test
problems, originally intended for the deterministic case.

The first set of instances consists of some examples of grids, representative in size
for our application. Besides, these instances are easy to modify and we can use them
to test different configurations of the parameters for our method. The second set is
defined by instances publicly available defined in Johnson et al. (1993) and initially
used for bisection. The tests on this second set were performed in order to confirm
the effectiveness of our stochastic algorithm (both in terms of solution quality and
running time) on a set of representative instances.

It should be noted that the instance “Grid 23 x 23”, from the first data set, with 529
vertices and 16 nodes, is the closest in size to the real instances we have to deal with
in our application context, at least as a first step.

The number of vertices for Johnson instances varies between 124 and 1000 and,
for both sets, we consider the case of mono-dimensional resources.

In the deterministic case, the tests were performed for unitary weights for edges
and vertices.

We have generated the random variables representing the weights of the vertices by
simulating a joint bimodal distribution. The two modes are uniform in their intervals
and selected in an equally likely manner.

The first mode is represented by the hypercube:

[0.8,0.91""",
and the second one, by the hypercube:

[1.1, 1.2V

4.2 Results for the deterministic version

Table 5 shows the experimental results obtained by applying the RG_PART heuristic
for graph partitioning on the first data set with deterministic vertices weights. All the
results were obtained for the monodimensional case (the capacity of each node is
indicated in column “C”) with unitary weights for edges and vertices. The column
“Multi” in Table 5 shows the solutions found by running the multi-start version of the
heuristic (with 10 iterations).

The RG_PART heuristic was applied on the larger sizes instances of Johnson et
al. (1993), with unitary weights for edges and vertices. As illustrated by Table 6, the

@ Springer

O. Stan et al.

Table 6 Computational results

of RG_PART heuristic for Name IVl ¢ Best known Mulii
?;’S‘:’;Ir:clie“;mc case: Johnson Gsub.500 500 250 206 236
G1000.0025 1,000 500 95 18
G1000.005 1,000 500 445 509
G1000.01 1,000 500 1362 1,461
G1000.02 1,000 500 3382 3,526
G124.02 124 62 13# 15
G124.04 124 62 63 68
G124.08 124 62 178 183
G124.16 124 62 449 471
G250.01 250 125 29+ 36
G250.02 250 125 114 127
G250.04 250 125 357 378
G250.08 250 125 828 855
G500.005 500 250 49% 61
G500.01 500 250 218 253
G500.02 500 250 626 669
G500.04 500 250 1,744 1,825
U1000.05 1,000 500 1 6
U1000.10 1,000 500 39+ 69
U1000.20 1,000 500 22 299
U1000.40 1,000 500 737 866
U500.05 500 250 2% 12
U500.10 500 250 26 68
U500.20 500 250 178 196
U500.40 500 250 412 412

solutions are reasonably close to the optimum (¥) or to the best known solutions (col-
umn “Best known”). Furthermore, for most instances we observed that the solutions
values found have an average differential approximation ratio (Demange and Paschos
1996) of 5.22 % compared to the best known value.

Although these results are only of moderate quality, our goal in the experimental part
of this paper, as already stated in Sect. 3.1, is to provide them for self-contentedness
and for serving, in the next section, as a starting point for measuring “the price of
robustness” of the solutions obtained by the algorithm derived for the stochastic case.

4.3 Results for the chance-constrained version

We have tested our adaptation of the algorithm for the stochastic case on the same
problems varying the parameters ¢ and « in the range {0.01, 0.05}. To obtain a set of
stochastic instances, we have considered that the weights of the vertices are random
variables with the aforementioned bimodal distribution and we generated correspond-
ing samples of size 100 and respectively 1000. Choosing a smaller size for the sample

@ Springer

The robust binomial approach

Table 7 Computational results

of the stochastic method for Ist test 2nd test
NS =100, ¢ = 0.05, « = 0.05: Name #Nodes Sol Time(s) C Sol Time (s)
grid problems
Grid 4 x 4 6 14 =0 4.71 12 =0
Grid 10 x 10 6 38 0.02 233 29 0.01
Grid23 x 23 16 182 1.12 44.1 173 0.99
Table 8 Computational results It test nd test

of the stochastic method for
NS = 1000, ¢ = 0.05, Name #Nodes Sol Time(s) C Sol Time (s)
o = 0.05: grid problems

Grid 4 x 4 6 14 =0 4712 12 =0

Grid 10 x 10 6 37 0.16 23273 37 0.13

Grid23 x 23 16 182 11.23 44.13 172 9.65
Table 9 Computational results Ist test 2nd test

of the stochastic method for
NS = 1000, e = 0.01, Name #Nodes Sol Time(s) C Sol Time (s)
o = 0.01: grid problems

Grid 4 x 4 6 14 =0 4.74 10 =0
Grid 10 x 10 6 37 0.15 23.36 37 0.13
Grid23 x 23 16 182 10.75 44.183 193 9.67

may make the solution infeasible, and larger values of NS increase computation time
of the problem.

The method has been implemented in C and, for each instance, 10 random iterations
of our algorithm were executed. Tables 7, 8 and 9 summarize the numerical results for
the grid problems for different values of the parameters N S, ¢ and «. The computational
results for the second data set, the Johnson instances, are reported in Tables 10, 11 and
12.

For each instance from the data sets, we performed two tests. The first test consists in
keeping the same node capacity as for deterministic case (see columns C from Tables
5, 6) and progressively increasing the number of nodes used in the deterministic case
until the probabilistic constraint is satisfied.

The numerical results of this test, reported in section “1st test” of Tables 7, 8, 9,
10, 11 and 12 are: the minimal number of nodes for which the probabilistic constraint
is respected (column “#Nodes”), the solution value (column “Sol”) and the average
execution time for 10 iterations in seconds (column “Time”).

For the second test, we maintain the same number of nodes as in the deterministic
case, but we gradually increase the capacity of all nodes (starting from one used in
the deterministic case) until finding a feasible solution, satisfying the probabilistic
constraint.

The results of this second test, reported in section ‘“2nd test” of Tables 7, 8, 9, 10, 11
and 12 are: the minimal capacity of each node for which we obtain a feasible solution
(column “C”), the solution value (column “Sol”’) and the average execution time for
10 iterations in seconds (column “Time”).

@ Springer

O. Stan et al.

Table 10 Computational results
of the stochastic method for

NS =100, & = 0.05, Name #Nodes Sol Time (s) C Sol Time (s)
1 —a = 0.95: Johnson problems

1st test 2nd test

Gsub.500
G1000.0025
G1000.005
G1000.01
G1000.02
G124.02
G124.04
G124.08
G124.16
G250.01

3 301 5.57 288300 244 5.55
3 135 5897 575.800 131 70.11
3 649 62.23 575.900 513 72.10
3 1,865 6530 575900 1,456 77.36
3 4,481 68.78 575.940 3,579 74.10
3 18 0.16 71.650 21 0.11
3 91 0.16 71.650 72 0.11
3 233 0.16 71.670 199 0.11
3 585 0.16 71.680 475 0.12
3 40 0.75 144.200 38 0.64
G250.02 3 162 0.76 144260 128 0.63
G250.04 3 485 0.78 144250 393 0.64
G250.08 3 1,074 0.77 144200 862 0.65
G500.005 3 68 5.14 288.370 67 5.20
G500.01 3 308 5.36 288340 269 5.04
G500.02 3 860 542 288280 679 5.44
G500.04 3 2,287 5.56 288.270 1,835 5.60
U1000.05 3 17 67.76 576.100 16 73.50
U1000.10 3 101 65.55 576.100 110 77.74
U1000.20 3 417 67.80 576.200 303 75.23
U1000.40 3 1,370 68.26 576.300 1,018 77.00
U500.05 3 10 5.05 288.390 7 5217
U500.10 3 88 5.58 288.270 66 5.38
U500.20 3 278 549 288200 396 5.43
U500.40 3 663 5.23 288.380 574 5.28

It is worthwhile noting that the solutions obtained in the second test, by increasing
the node capacity, are of better quality than the solutions of the first experiment (see
columns “Sol”) and can be adjustable more accurately. For example, in Table 8 for
Grid 10 x 10, for finding a feasible solution, we must add two more nodes but in this
case the solution found is too conservative since all the constraints are verified. Since,
however, in practice it is easier to modify the number of nodes than the capacity of
each node, we also investigated the results found by the first test.

Our main purpose with these tests is to get an idea of the cost of the robustness of
the solutions, independently of concrete application constraints.

In evaluating the performance of our heuristic method, between the main aspects
we consider are: the capacity and the number of nodes needed for finding a feasible
solution, the time factor and the robustness and quality of the solutions.

In our first test, we were interested in the number of nodes needed for the stochastic
case compared to the deterministic one. Our computational results show that the ratio
between the number of nodes for stochastic partitioning and the number of nodes for

@ Springer

The robust binomial approach

Table 11 Computational results
of the stochastic method for

NS = 1000, ¢ = 0.05, Name #Nodes Sol Time (s) C Sol Time (s)
1 —a = 0.95: Johnson problems

1st test 2nd test

Gsub.500
G1000.0025
G1000.005
G1000.01
G1000.02
G124.02
G124.04
G124.08
G124.16
G250.01

3 298 26.72 288.240 252 18.94
3 136 139.30 576.030 134 119.48
3 653 143.70 576.060 528 123.52
3 1,866 141.00 576.060 1,470 125.70
3 4,482 140.86 576.040 3,599 127.95
3 17 1.39 71.662 17 0.91
3 87 1.37 71.654 68 0.92
3 237 136 71.660 182 0.93
3 599 1.35 71.653 479 0.91
3 39 5.84 144310 39 4.00
G250.02 3 163 5.81 144310 129 4.04
G250.04 3 483 5.78 144295 387 3.99
G250.08 3 1,080 5.75 144257 872 3.98
G500.005 3 69 26.67 288.240 68 18.88
G500.01 3 320 26.74 288.240 258 19.00
G500.02 3 853 26.87 288250 668 19.15
G500.04 3 2,283 26.76 288.250 1,829 19.18
U1000.05 3 18 140.90 576.050 6 125.70
U1000.10 3 74 139.40 576.060 115 126.80
U1000.20 3 417 141.40 576.030 339 126.80
U1000.40 3 1,370 143.51 576.080 1,032 132.60
U500.05 3 16 26.73 288.300 2 1949
U500.10 3 105 26.90 288.260 75 19.32
U500.20 3 289 27.15 288.250 289 19.21
U500.40 3 663 2673 288240 569 18.89

deterministic partitioning for the same instance is 1.5, except for Grid 23 x 23, for
which the ratio is equal to ~1.14. The same ratio of 1.5 was found for the Johnson
instances.

For the second test, we analyzed the required increase in capacity for solving the
stochastic version of the problems. The stochastic solutions of the instances reported
in Tables 7, 8 and 9 are obtained for an equally large increase in the capacity of
the nodes in the order of 1.1. For the Johnson instances, the capacity of nodes for
stochastic partitioning is superior to the nominal capacity with ~1.15. As one may
expect, keeping the same probability and confidence levels and changing the sample
size does not significantly affect the minimal capacity of the nodes for which a valid
solution is found. On the contrary, imposing a higher probability and confidence levels
demands a minimal capacity of nodes slightly larger (in the order of 0.001). Following
the run of each instance, we have also observed a particular behavior consisting in a
threshold effect of the solutions, sensible to the node capacity variations. One example
is the problem U1000.10 for which an augmentation of the capacity from 576.06 to
576.20 results in a largely better solution (69 against 115).

@ Springer

O. Stan et al.

Table 12 Computational results
of the stochastic method for

NS = 1000, ¢ = 0.01, Name #Nodes Sol Time (s) C Sol Time (s)
1 —a = 0.99: Johnson problems

1st test 2nd test

Gsub.500
G1000.0025
G1000.005
G1000.01
G1000.02
G124.02
G124.04
G124.08
G124.16
G250.01

3 298 2532 288.610 240 18.94
3 137 141 576.470 132 121.51
3 654 140.77 576.520 519 127.54
3 1,870 141.66 576.520 1,467 125.74
3 4,475 141.23 576.530 3,544 128.78
3 17 1.35 71.865 17 0.9
3 87 1.34 71.825 73 0.92
3 237 1.33 71.851 187 0.92
3 599 1.33 71.831 484 0.91
3 39 5.73 144.548 40 4
G250.02 3 163 5.73 144530 132 4
G250.04 3 483 5.65 144515 383 4.06
G250.08 3 1,085 5.65 144.523 856 3.95
G500.005 3 69 2533 288.490 68 19.38
G500.01 3 320 25.32 288540 258 19
G500.02 3 853 252 288530 687 19.6
G500.04 3 2,283 2525 288.520 1,852 19.3
U1000.05 3 20 141.79 576.550 1 125.76
U1000.10 3 74 140.69 576.520 90 128.03
U1000.20 3 421 143.14 576.570 339 131.14
U1000.40 3 1,376 145.14 576.580 1,137 127.47
U500.05 3 16 26.73 288.570 2 1917
U500.10 3 105 25.75 288.560 62 19.03
U500.20 3 289 254 288.560 289 19.15
U500.40 3 663 25.08 288.570 569 19.41

Concerning the time factor, the overall execution time of our method depends
mainly on the number of vertices and on the size of the sample. We note that the
running time needed to solve Johnson instances is considerably higher than the time
required for the grid problems, the reason being the presence of instances of larger
size (e.g., G1000.0025-G1000.02, U1000.05-U1000.40). As expected, the larger is
the sample size, the higher is the computation time, with an average of 48.04s. for a
sample size of 1000 (Table 11) against 25.93 s. for a sample size of 100 (Table 10) for
the second test. It should also be noted that the computation time for the first test is, in
average, superior to the time for finding solutions in the second one. By comparison
of Tables 11 and 12, it appears that when a higher probability level ¢ and confidence
level o are imposed, a slightly higher execution time is needed.

Although these results could be improved (e.g. by code optimization and paral-
lelism), such execution durations are already acceptable in our application context
with respect to the usual compilation duration of a dataflow process network on a
many core architecture.

@ Springer

The robust binomial approach

The running times found for the stochastic version of the algorithm confirm the
theoretical remarks (see Sect. 3.7) on a linear increase in complexity with a factor of
N S in comparison of the deterministic case.

In order to measure the quality and the robustness of the stochastic solutions, the
algorithm RG_PART was re-run with the same input parameters as the ones found with
the chance-constrained method. We kept the same number of nodes and respectively
the same capacity of each node as the ones for which the chance-constrained methods
found feasible solutions and we considered unitary weights for arcs and unitary weights
for tasks (which is the expected value of the distribution of our uncertain data).

For the first test, consisting in increasing the number of nodes, the quality of the
stochastic solutions is, as expected, almost always worse than for the deterministic
version and than for the solutions found by the second test. One exception is the
instance U500.05, from Table 10 but this result is assumed to be due to the heuristic
nature of our approach, which, by construction, provides no guarantees with respect
to monotony.

Instead, the stochastic solutions of the second test are quite often close in quality to
the solutions found when running RG_PART algorithm. By analyzing Tables 10 and
11, for e, @ = 0.05 we found out that there are 14 and respectively 15 instances with a
gap in the stochastic solution quality of less than 5 % from the deterministic solutions.
When analyzing the results for a probability level of 0.99 and a level of confidence of
0.99 (Table 12), we remark a number of 14 stochastic solutions close (a relative 5 %
gap) to the deterministic solutions.

By comparing the quality of solutions for different values of the input parameters
(NS, e, «) it comes out that for the same probability and confidence levels, the obtained
solutions when varying the sample size are quite similar, revealing that the performance
of our algorithm does not deteriorate as the number of samples increases. It should be
noted that it is however necessary to determine the minimal size of the sample needed
to solve the problem with the required probability level. The required sample size for
e, o = 0.01, is at least 459, which justifies our choice not to conduct tests for these
values on the samples of size 100.

Concerning the robustness of the solutions found by the presented approach, we
measured the number of times the deterministic solution is not satisfied on the used
samples. The percentage of samples on which the deterministic solution is not satis-
fying the capacity constraints 3 is, in average, for Tables 10, 11 and 12 between 48.24
and 50.04 %.

Analyzing the overall results, we observe that our stochastic heuristic confirms the
capacity of computing good solutions, within an admissible average running time,
even for large instances. The quality of the solutions is comparable to the deter-
ministic case (i.e. the “price of robustness” is not too high) and moreover we guar-
antee that our solutions are robust to the uncertainties affecting the weights of the
vertices.

@ Springer

O. Stan et al.

5 Conclusion

In this paper, we introduced a non-parametric and general sample-based method
for chance-constrained programs which, using statistical hypothesis testing, can be
applied to leverage existing heuristic algorithms for the deterministic case for solving
the stochastic version of the same problem. The proposed methodology is suitable to
approximate chance-constrained problems where an analysis of the uncertainty data
reveals complex probability distributions, for which analytical descriptions are dif-
ficult to compute and general assumptions are inappropriate. As such, the approach
can be successfully applied to many practical engineering problems, in which sam-
ples on random variables are available, providing robust solutions guaranteed with a
predefined statistically significant level of confidence.

Having at our disposal an admissibility oracle-based algorithm already developed
for the deterministic version of a problem, it is reasonably straightforward to make the
necessary changes in order to treat the stochastic case. For obtaining solutions to the
chance-constrained problem (with probability level of 1 — ¢) which are statistically
meaningful with a confidence level of 1 — «, all we have to do is to modify the oracle
deciding on the admissibility of a solution. In the stochastic method, this admissibility
oracle integrates the robust binomial approach, by verifying that the number of con-
straints which are respected exceeds a threshold k established based on the sample
size, the prescribed probability level 1 — & and the confidence level 1 — «.

We can also remark that the robust binomial approach is general. It can be easily
adapted to any stochastic program, including the individual chance-constrained pro-
grams, by counting the number of times the probablistic constraints are satisfied in a
realization of the sample.

As an illustration of the practical relevance of this approach, we addressed the prob-
lem of chance-constrained partitioning of communicating process networks, which
arises in compilation for embedded parallel systems. After a brief analysis of the
random data, we proposed an heuristic algorithm, combining sampling and statisti-
cal hypothesis testing with a randomized greedy method originally designed for the
deterministic case.

Numerical results showed that the obtained solutions have often a quality consistent
with those computed for the deterministic version.

More importantly, the solutions found are robust and guaranteed with a preset sta-
tistical significance level, to hold to data variations affecting the constraints. We also
showed that not taking into account the stochastic nature of our data and considering
only the deterministic case may lead to non feasible solutions with quite high probabil-
ity (in average 50 % of cases). Furthermore, this approach can solve with an acceptable
computation time problems close in dimensions to the real instances a compiler would
have to treat.

In further work, we plan to investigate two directions. The first one is to design a
parallelized and more efficient implementation of our method. This would allow the
treatment of problems with large instances or with a high number of constraints or
those which demand a high level of robustness (meaning values of ¢ inferior to 1072).
Other direction concerns the application case, in which a more thorough analysis
and characterization of execution time distribution (using for example methods of

@ Springer

The robust binomial approach

static code analysis) would allow us to have a more accurate characterization of the
uncertainties affecting the weights of the processes. Other future directions of research
consist in the design and implementation of more heuristic strategies, combining the
sample approximation with other approximate algorithms, originally developed for
solving deterministic problems.

Acknowledgments The authors thank the anonymous referees for several suggestions that led to improve-
ments in the paper.

References

Aringhieri, R.: Solving chance-constrained programs combining tabu search and simulation. In: Proceedings
of the 3rd International Workshop on Experimental and Efficient Algorithms (WEAO04). Lecture Notes
in Computer Science, vol. 3059, pp. 30-41. Springer, Berlin (2004)

Barbu, A., Zhu, S.-C.: Stochastic graph partition: generalizing the Swendsen—Wang method. Technical
Report Paper 2003010120, UCLA Department of Statistics (2003)

Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1-13
(1999)

Beraldi, P., Ruszczynski, A.: Beam search heuristic to solve stochastic integer problems under probabilistic
constraints. Eur. J. Oper. Res. 167(1), 35-47 (2005)

Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35-53 (2004)

Bianchi, L., Dorigo, M., Gambardella, L., Gutjahr, W.: A survey on metaheuristics for stochastic combina-
torial optimization. Nat Comput 8(2), 239-287 (2006)

Bichot, C.H.: A new method, the fusion fission, for the relaxed-way graph partitioning problem, and com-
parisons with some multilevel algorithms. J. Math. Model. Algorithms 6(3), 319-344 (2007)

Bichot, C., Durand, N.: Partitionnement de graphe. Lavoisier, Paris (2010)

Calafiore, G., Campi, M.: Uncertain convex programs: randomized solutions and confidence levels. Math.
Program. 102, 25-46 (2005)

Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Automat. Control
51(5), 742-753 (2006)

Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to sto-
chastic programming of heating oil. Manag. Sci. 4(3), 235-263 (1958)

David, V., Fraboul, C., Rousselot, J.Y., Siron, P.: Etude et realisation d’une architecture modulaire et
reconfigurable: Projet MODULOR. Technical Report, 1/3364/DERI.ONERA (1991)

de Farias, D., Van Roy, B.: On constraint sampling in the linear programming approach to approximate
linear programming. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 3, pp.
2441-2446 (2003)

Demange, M., Paschos, V.: On an approximation measure founded on the links between optimization and
polynomial approximation theory. Theor. Comput. Sci. 158, 117-141 (1996)

Dentcheva, D., Prékopa, A., Ruszczynski, A.: Concavity and efficient points of discrete distributions in
probabilistic programming. Math. Program. 89, 55-77 (2000)

Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. CRC Press, Boca Raton (1994)

Elsner, U.: Graph partitioning—a survey. Technical Report, TU Chemnitz SFB393/97-27 (1997)

Fan, N., Pardalos, P.: Robust optimization of graph partitioning and critical node detection in analyzing
networks. In: Proceedings of the 4th Annual International Conference on Combinatorial Optimization
and Applications (COCOA 2010), pp. 170-183 (2010)

Fan, N., Zheng, Q., Pardalos, P.: On the two-stage stochastic graph partitioning problem. In: Proceedings
of the Sth Annual International Conference on Combinatorial Optimization and Applications (COCOA
2011), pp. 500-509 (2011)

Ferreira, C.E., Martin, A., de Souza, C., Weismantel, R., Wolsey, L.: The node capacitated graph partitioning
problem: a computational study. Math. Program. 81, 229-256 (1998)

Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings
of the 19th Design Automation Conference. DAC 82, pp. 175-181. IEEE Press, Piscataway (1982)
Fjéllstrom, P.O.: Algorithms for graph partitioning: a survey. Linkdping Electron. Articles Comput. Inf.

Sci. 3, 10 (1998)

@ Springer

O. Stan et al.

Gaivoronski, A., Lisser, A., Lopez, R., Xu, H.: Knapsack problem with probability constraints. J. Glob.
Optim. 49, 397413 (2011)

Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput.
Sci. 1(3), 237-267 (1976)

Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proceedings of the 1995
ACM/IEEE Conference on Supercomputing (CDROM). ACM, New York (1995)

Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing: an experimental
evaluation; part i, graph partitioning. Oper. Res. 37(6), 865-892 (1989)

Johnson, E., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Math. Program. 62, 133-151 (1993)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM
J. Sci. Comput. 20, 359-392 (1998)

Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(1),
291-307 (1970)

Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975-986 (1984)

Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite programming. Math. Program. 95,
91-101 (2003)

Loughlin, D.H., Ranjithan, S.: Chance-constrained genetic algorithms. In: GECCO-99: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 369-376 (1999)

Mehrotra, A., Trick, M.: Cliques and clustering: a combinatorial approach. Oper. Res. Lett. 22, 1-12 (1997)

Pagnoncelli, B.K., Ahmed, S., Shapiro, A., Pardalos, P.M.: Sample average approximation method for
chance constrained programming: theory and applications. J. Optim. Theory Appl. 142, 399-416 (2009)

Prekopa, A.: Stochastic Programming. Kluwer Academic Publishers, Dordrecht (1995)

Sensen, N.: Lower bounds and exact algorithms for the graph partitioning problem using multicommodity
flows. In: Meyer auF der Heide, F. (ed.) Lecture Notes in Computer Science, vol. 2161, pp. 391-403.
Springer, Berlin (2001)

Sirdey, R., David, V.: Approches heuristiques des problemes de partitionnement, placement et routage
de reseaux de processus sur architectures paralleles clusterisées. Technical Report, CEA LIST
DTSI/SARC/09-470/RS (2009)

Stan, O., Sirdey, R., Carlier, J., Nace, D.: A heuristic algorithm for stochastic partitioning of process
networks. In: ICSTCC (2012)

Tanner, M.W., Beier, E.B.: A general heuristic method for joint chance-constrained stochastic programs
with discretely distributed parameters (2007). http://www.optimization-online.org/DB_HTML/2007/
08/1755.html

Taskin, Z.C., Smith, J.C., Ahmed, S., Schaefer, A.: Cutting plane algorithms for solving a stochastic edge-
partition problem. Discret. Optim. 6(4), 420-435 (2009)

Vidyasagar, M.: Randomized algorithms for robust controller synthesis using statistical learning theory. In:
Learning Control and Hybrid Systems. Lecture Notes in Control and Information Sciences, vol. 241, pp.
3-24. Springer, Berlin (1999)

@ Springer

