
J Heuristics
DOI 10.1007/s10732-014-9241-6

The robust binomial approach to chance-constrained

optimization problems with application to stochastic

partitioning of large process networks

Oana Stan · Renaud Sirdey · Jacques Carlier ·

Dritan Nace

Received: 19 January 2012 / Revised: 28 May 2013 / Accepted: 19 February 2014

© Springer Science+Business Media New York 2014

Abstract In this paper, we study an interpretation of the sample-based approach to

chance-constrained programming problems grounded in statistical testing theory. On

top of being simple and pragmatic, this approach is theoretically well founded, non

parametric and leads to a general method for leveraging existing heuristic algorithms

for the deterministic case to their chance-constrained counterparts. Throughout this

paper, this algorithm design approach is illustrated on a real world graph partitioning

problem which crops up in the field of compilation for parallel systems. Extensive

computational results illustrate the practical relevance of the approach, as well as the

robustness of the obtained solutions.

Keywords Chance-constrained optimization · Heuristic design · Graph partitioning

1 Introduction

In this paper, we consider optimization problems of the following general form:

min
x

g (x) (CCP)

s.t. P (G(x, ξ) ≤ 0) ≥ 1− ε

O. Stan (B) · R. Sirdey
CEA, LIST, Embedded Real Time System Laboratory, Point Courrier 172,

91191 Gif-sur-Yvette, France

e-mail: oana.stan@cea.fr

J. Carlier · D. Nace

UMR CNRS 6599 Heudiasyc, Université de Technologie de Compiègne,

BP 20529, 60205 Compiègne, France

123

Author's personal copy

O. Stan et al.

In the above model, x ∈ R
n is the decision variable vector, ξ ∈ Ω −→ R

D represents

a random vector and g : R
n −→ R is the objective function. We suppose that the

probability space is (Ω,Σ, P), with Ω , the sample space, Σ , the set of events, i.e.

subsets of Ω , and P, the probability distribution on Σ . G : R
n × R

D −→ R
m is the

constraint function, 0 ≤ ε ≤ 1 is a scalar defining a prescribed probability level and

P(e) is the probability measure on the set Σ .

Introduced in the seminal work of Charnes et al. (1958), chance-constrained pro-

grams have been extensively studied under diverse flavors withmany different solution

techniques. Since even for simple cases (e.g. linear programs) problem (CCP) may

be extremely difficult to solve, the vast majority of existing approaches model the

problem by making particular assumptions about the distribution of the stochastic

parameters (usually assuming either or both independence and Gaussian distribu-

tion). However, since in many real world situations these assumptions are not veri-

fied, another approach consists in approximating the chance constraints, such as in the

sample-based approach, which makes use of experimental data and, more importantly,

requires no assumptions on the distribution of the parameters. We propose a non para-

metric sample-based method which takes advantage of basic results from statistical

testing theory, remaining flexible and applicable within a heuristic framework to real

applications in which uncertainty can arise.

Moreover, by directly exploiting the available experimental data, without anymodel

assumption, and by making use of existing algorithms developed for the deterministic

case, our approach can be adapted to a wide range of optimization problems, without

anymajor difficulty of integration in terms of both software engineering and execution

times.

In order to illustrate our general approach, we will consider a particular problem

arising in the field of compilation for real-time embedded systems, the partitioning of

process networks on a clusterized parallel architecture. This problem is an extension

of the more abstract problem of graph partitioning, for which the deterministic version

is known to be NP-hard (Garey et al. 1976). The specific class of partitioning problems

considered in this paper consists in assigning the weighted vertices of a graph to a fixed

set of partitions, in order tominimize the sumof costs for edges having their extremities

in different partitions, without exceeding the limited capacity of each partition and by

taking into account the uncertainty affecting the verticesweights.Known for the single-

dimensional deterministic case as the Node Capacitated Graph Partitioning problem

(Ferreira et al. 1998), this problem has, to the best of our knowledge, received little

attention from the stochastic programming community.

For solving the chance-constrained version of the capacitated graph partitioning,

we applied a new method which consists in combining sampling with an existing

randomized greedy heuristic, described in Stan et al. (2012) and which has proved to

be reasonably efficient for the placement of the processes in the deterministic case.

As shown in the sequel, the proposedheuristic (greedy algorithm) consists in provid-

ing, with a preset level of confidence, more robust solutions for the above-mentioned

problem.

The remainder of this paper is organized as follows: Section 2 presents other related

works and discusses the motivations and the basic idea behind our approach. After-

wards, we report the basic results of statistical hypothesis testing theory that we use

123

Author's personal copy

The robust binomial approach

and the general sample-based method of resolution we propose. Section 3 is dedicated

to our application case. After a formal definition of our problem and a survey on exist-

ing methods for graph partitioning, we briefly recall the randomized greedy algorithm

our approach is based on and present our stochastic resolution strategy. Experimental

results are provided and analyzed in Sect. 4. Finally, some concluding remarks and

further research directions are discussed in Sect. 5.

2 Stochastic approach

As one may expect, chance-constrained optimization problems are inherently difficult

to address and although this class of problems have been studied for the last fiftyyears,

only a few advances towards practical resolution methods have been reported. Among

the main reasons that make chance-constrained programs computationally intractable

in the general case are their combinatorial nature, the possible non-convexity of the

feasible set and the difficulty to integrate multi-dimensional complex probability dis-

tributions.

Before presenting the main contributions of this paper, the next section provides an

overview of the existing resolution approaches to chance-constrained programs with

an emphasis on other heuristics methods.

2.1 State of art: chance-constrained optimization

Among the wide range of literature on the subject, there are a lot of theoretical studies

dedicated to the convexity of chance-constrained. This branch of research focuses

on finding convex restrictions to the space of feasible solutions such that standard

methods can be then applied for a more efficient optimization. For instance, it has

been shown that the only generic case for which the difficulties encountered when

solving chance-constrained programs can be overcome, is the normal distribution. We

may refer the reader to Prekopa (1995) for theoretical background and an extensive

list of references.

Other approaches, from the field of robust optimization, consist in proposing, by

relaxation techniques, equivalent deterministic programs to chance-constrained prob-

lems. However, these methods can be applied only for particular classes of problems,

such as linear (Bertsimas and Sim 2004), semidefinite or quadratic programs (Ben-

Tal and Nemirovski 1999) and the probabilistic considerations are accompanied by

restrictions on the structure of the uncertain vector ξ (e.g. independence of the com-

ponents).

Another exact approach consists in supposing that the probability distribution is

known, discrete as well as having a bounded support, and subsequently solving the

obtained combinatorial problem (Dentcheva et al. 2000). An example is the model

used in Gaivoronski et al. (2011) for solving the quadratic knapsack problem with

probability constraints which, at first view, seems identical with the formulation we

propose in this paper. Although the structure is similar, this model makes the assump-

tion that the distribution of the random constraint matrix m × n is known and has the

form
∑

A∈Ω pAδA,with
∑

A∈Ω pA = 1,Ω the event set and δξ the Dirac distribution

123

Author's personal copy

O. Stan et al.

centered at point ξ ∈ R
m×n . Under these conditions, for example, an equivalent to a

linear chance-constrained program is the following mixed integer linear programming

(MILP):

min cT x

s.t. Ax ≤ b + (1− χA)L , A ∈ Ω
∑

A∈Ω

pAχA ≥ (1− ε)

χA ∈ {0, 1}, A ∈ Ω.

in which c ∈ R
n is the cost vector, x ∈ R

n is the decision variable vector, χA ∈ R
m

is a vector of binary variables and L is a suitable large problem-dependent constant.

Othermethods for finding feasible solutions to this kind of optimization problems is

through sampling (Calafiore and Campi 2006; Pagnoncelli et al. 2009). Thesemethods

are also making different assumptions on the model and distribution of the uncertain

data and furthermore the solutions found are often highly conservative.

Actually, since dealing with uncertainty in optimization problems is highly com-

plicated and difficult, the approaches that guarantee to find optimal solutions are more

appropriate when solving small size instances and they also require a lot of computa-

tional effort. In contrast, approaches based on heuristics or metaheuristics are capable

of finding good and even optimal solutions to problem instances of realistic size, in a

smaller computation time. We refer the reader to Bianchi et al. (2006) for an exten-

sive survey on the existing metaheuristics for dealing with stochastic combinatorial

optimization problems.

However, to the best of our knowledge and as pointed in the survey (Bianchi et al.

2006), there are only a few heuristics proposed for solving the problem we consider

here, formulated in (CCP), a program without recourse with uncertainty affecting the

constraints.

In Loughlin and Ranjithan (1999), the approach consists in using a Monte-Carlo

simulation in a genetic algorithm fitness function. For each uncertain parameter, a

statistical distribution must be obtained or assumed and the sampling is carried out

using either Monte-Carlo sampling or Latin hypercube sampling. If the estimated

reliability of meeting one or more constraints is less than the prescribed probability

level, the current solution is penalized. As such, the use of sampling is different from

our approach and no theoretical guarantees are provided for establishing the number

of necessary realizations.

Another method for solving chance-constrained programs, suggested in Aringhieri

(2004), combines a tabu search heuristic with simulation. The evaluation of the fea-

sibility of a solution is realized using two different methods. The first one consists in

randomly generating T values for each random variable and computing the average

over them in order to evaluate the constraints. The second method uses the central

theorem limit to obtain a normal approximation of a sum of independent random

variables. Although the first method is sample based, no statistical tools are used in

order to determine and reduce the T , which is the dimension of the sample employed

123

Author's personal copy

The robust binomial approach

to estimate the constraint feasibility. Furthermore, the second evaluation makes the

simplifying assumption of independence of the random variables.

Another tabu search heuristic is proposed in Tanner and Beier (2007) for solving

joint chance constrained stochastic programs with random parameters having discrete

distributions. The main focus of the paper is on exploiting the scenario structure:

identifying subsets of scenarios that are more important in finding good solutions,

adding or removing scenarios at each iteration step. Though the ideas presented are

interesting, it seems that the maintenance of the set of scenarios to work with can be

computationally demanding.

A beam search heuristic, based on the classical Branch and Bound scheme, is

suggested in Beraldi and Ruszczynski (2005) for solving chance constrained programs

with integer variables. In order to evaluate which nodes to explore further, the heuristic

is using the lower bound of the optimal solution, computed using the notion of p-

efficient point. It is however worthwhile mentioning that the definition of p-efficient

point is employing the conditional marginal distribution function, and thus thismethod

supposes as known and calculable the distribution of the uncertain variables.

2.2 Basic ideas and motivations

Most of the studies mentioned above are making assumptions (e.g., existent analytical

form of the distribution, independence of the random vector components) which are

rather either restrictive, or difficult to verify or not always adequate to represent the

uncertainty of real-life applications.

We have found that, in many real world situations, the probability distribution is

not explicitly known or its integration is too difficult. One example shown in this

paper is given by the execution times of medium-grained computer programs which

are random variables difficult to fully describe analytically. However, in practice, we

have at our disposal some observations for the uncertain data, obtained, for example,

when performing tests on the target architecture. These observations can be directly

employed in order to construct an equivalent optimization problem, more robust and

compatible with the variations of the real data, with the condition that the available

sample is sufficiently representative of the entire distribution.1

To the best of our knowledge, the only tractable approximation of the probabilistic

constrained programs, which does not impose any restrictions on the structure of the

uncertain data (in particular with respect to random vector component independence),

is the one derived from the general scenario approach.

The optimization problem (CCP) can be then approximated by the convex program:

min
x

g (x)

s.t. G(x, ξ̃ (i)) ≤ 0; i = 1 . . . N S (RC PN S)

1 An assumption that can be in practice checked, to some extent, using static program analysis techniques.

An assumptionwhich also relies reasonably on the expertise of test engineers in terms of designing validation

cases representative of real-world system operation.

123

Author's personal copy

O. Stan et al.

where ξ (1), . . . , ξ (N S) is a sample of size N S of independent and identically distributed

observations of ξ and ξ̃ (i) is a realization of ξ (i). Let us recall that ξ is a random vector

and that no assumptions are required on its joint probability distribution, in particular

with respect to the independence of its components. The scenario approach searches

for solutions which satisfy the probabilistic constraints for all the realizations of ξ . The

acronym RC PN S refers to the fact that this new formulation is a robust programwhere,

instead of having m constraints, we have N S ×m constraints. As such, this approach

provides a conservative approximation to the original program, by finding feasible but

suboptimal solutions. Theoretical justification of this approximation scheme can be

found in (de Farias and Van Roy 2003; Calafiore and Campi 2005).

Our idea is to take advantage of the experimental data and revisit the scenario

approach using elementary tools from statistical hypothesis testing theory and directly

exploiting the available sample.

Also, in order to face the computational complexity which is one of the major

drawbacks of the sample-based method, we propose a general way of integrating it in

almost any heuristic algorithm. In this manner, even if the application case requires a

high level of precision for the probability constraint threshold ε, which involves the

analysis of a large sample, our approximation remains computationally tractable and,

as we shall see in the next section, statistically significant.

Our algorithm design methodology consists in leveraging existing heuristics for the

deterministic case without significant destructuring them (i.e. at small cost in terms of

software engineering) and with acceptable performance hit. Furthermore, this method

could be applicable to pretty much any such algorithm.

Hence, the contribution of this paper ismore centered on demonstrating the practical

relevance of our redesign-for-the-stochastic-case methodology than on demonstrating

the intrinsic quality of the algorithms involved.

2.3 Statistical hypothesis testing

Before presenting the statistical results on which our method is based, let us introduce

the following notation:

x Decision vector

ξ Uncertainty vector

p0 P(G(x, ξ) ≤ 0)

ξ (1), . . . , ξ (N S) i.i.d. random variables corresponding to N S observations of ξ

ξ̃ (i) realization of observation ξ (i)

χi Bernoulli variable equal to 1 ifG
(

x, ξ (i)
)

≤ 0 and 0 otherwise.

So the random variable χ =
∑N S

i=1 χi follows, by definition, a Binomial distribution

with parameters N S and p0 (χ ∼ B(N S, p0)). Let us now consider a realization χ̃ of

χ . If χ̃ (corresponding to the number of times the inequality G(x, ξ) ≤ 0 is satisfied

on a sample of size N S) is sufficiently large (for instance, larger than k(N S, 1−ε, α)),

we say that the constraint P(G(x, ξ) ≤ 0) ≥ 1− ε is statistically satisfied.

123

Author's personal copy

The robust binomial approach

Table 1 Examples values for

k(N S, 0.90, 0.05) in function of

N S

NS k(NS, 0.90, 0.05)

10 –

20 –

30 29

40 38

50 48

100 95

1000 915

The value of the threshold k(N S, 1− ε, α) (to which, for simplicity sake, we will

refer, from now on, as k) will be chosen so that the probability we accept the constraint

by error is smaller than a fixed α, in which case p0 is strictly smaller than 1− ε:

P(χ ≥ k) ≤ α (1)

For any fixed p0 < 1−ε,P(χ ≥ k) is smaller thanP(χ ′ ≥ k)when χ ′∼B(N S, 1−

ε). So we can choose k such that P(χ ′ ≥ k) ≤ α.

Thus, given x , the parameter α can be interpreted as the type I error of the statistical

hypothesis test:
{

H0 : P (G(x, ξ) ≤ 0) < 1− ε

H1 : P (G(x, ξ) ≤ 0) ≥ 1− ε

H0 is (intuitively) the hypothesis which we wish to reject only if we have statistically

significant reasons to do so (which is the correct setting if we wish to confidently

achieve robustness), as, recall, it is well known that the two hypothesis of such a test

are not symmetric.

Hence, we can conclude, with a confidence level of at least 1− α, that p0 ≥ 1− ε.

Table 1 shows some minimal values for k in function of the sample size N S, ε =

0.10 and α = 0.05. For example, for establishing that an inequality holds with a preset

probability level of 1−ε = 0.90 andwith a confidence level 1−α = 0.95, for a sample

of size 50, the threshold k needed is at 48 and P(χ ≥ 48|p0 = 0.90; 50) ≈ 0.034. It

should also be noted that, for a practical use, the parameters ε and α should be of the

same order of magnitude.

Table 2 gives a deeper insight about the minimal number of constraints to respect in

function of ε, the prescribed probability level and α, the confidence level when N S, the

size of the sample, is equal to 30 (the folklore minimal size for which a population is

considered statistically significant), 100 and respectively 1000. It should be remarked

that for respecting higher probability and confidence levels, a more important sample

size is needed but however, a sample size of 1000 seems sufficient even when ε = 0.01

and α = 0.01.

We can also establish in advance the minimal size of the sample required for a fixed

level of the probability 1−ε (with ε ∈]0, 1[) and a prespecified confidence level 1−α

(with α ∈]0, 1[). In particular, if p0 = 1− ε and:

P(χ = N S) > α

123

Author's personal copy

O. Stan et al.

Table 2 Values of k in function

of α and ε
NS = 30 NS = 100 NS = 1000

ε 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

α

0.01 – – – – 99 96 996 965 921

0.05 – – 29 – 98 95 995 961 915

0.1 – – 29 – 98 94 994 959 912

then we can affirm that the sampling size is insufficient (which is true for N S = 10

and N S = 20, see Table 1). The above formula provides an easy way to determine

the minimal number of realizations that need to be drawn in order to statistically

significantly (α) achieve the desired probability level (ε). We remark that its compu-

tation does not depend on the number of decision variables as in Calafiore and Campi

(2006), nor on complicated complexity measures from Vapnik–Chervonenkis theory

as in Vidyasagar (1999).

2.4 Chance constraints and sampling

The statistical theory above can be applied for obtaining a statistically significant

approximation model to the initial program (CCP). In order to obtain a relevant equiv-

alent program, we make the following assumptions about the random vector ξ , repre-

sented by a sample of size N S of observations ξ (i), with i = 1, . . . , N S:

Assumption 1 N S, the size of the sample for the uncertain vector ξ , is sufficiently

representative and finite.

Assumption 2 The sample for ξ is composed of independent and identically distrib-

uted (i.i.d.) observations: ξ (1), . . . , ξ (N S).

We would like to attract the attention of the reader that we are not treating time

series. As such, our assumption of independence is on the different observations of the

random vector and not on its components which (as already stated) can be dependent.

Additionally, these assumptions remain quite general. As many previous studies do

not mention, they are also necessary in the case of methods using a probability model,

as the model itself must be validated e.g. on a Kolmogorov–Smirnov hypothesis test

using an i.i.d. sample of experimental data.

Moreover, the first assumption is not very restrictive, since even if the number

of initial observations is not sufficient, we can resort to statistical methods for re-

sampling, such as bootstrapping (Efron and Tibshirani 1994). However, it is important

that the initial sample is representative of the distribution. We underline that we are

not concerned in this paper by the acquisition of representative experimental data.

This stage has to be realized a priori at system level, for example during the validation

stage and needs to be done regardless of the method used for solving the chance-

constrained programming. If we take the case of a video encoder for example, the

validation tests should provide representative samples of video sequences which can

be used for building our approximation program. Afterwards, in order to validate the

123

Author's personal copy

The robust binomial approach

robust approach, we need other video samples, statistically identical but, of course,

different from the first ones.

Let define the binary variable χ̃i for realization ξ̃ i :

χ̃i =

{

1 ifG
(

x, ξ̃ (i)
)

≤ 0,

0 otherwise.

Since the sum
∑N S

i=1 χi follows a Binomial distribution of parameters N S and p0
(again, by construction), we can determine k(N S, 1 − ε, α). Therefore, we can use

χ̃i , the realization of the variables χi , and replace the constraint probability

P(G(x, ξ) ≤ 0) ≥ 1− ε

to obtain the (RBP) formulation, equivalent to (CCP):

min
x

g (x) (RBP)

s.t.

N S
∑

i=1

χ̃i ≥ k(N S, 1− ε, α)

G(x, ξ̃ (i)) ≤ (1− χ̃i)L; i = 1, . . . , N S (2)

χ̃i ∈ {0, 1}; i = 1, . . . , N S

The first constraint assures that the number of constraints which are satisfied for the

given sample are superior to the threshold k, fixed in advance in function of N S, ε

and α. Constraints 2 verify the respect of the constraint for each realization i , making

the link between x , ξ̃ (i) and χ̃i , with L a constant of large size, depending on the

problem structure but generally easy to find. For example, for a knapsack constraint
∑m

i=1wi xi ≤ C with wi ≥ 0 the weights of the m items to be placed, supposed

uncertain, xi binary variables and C the maximal capacity allowed, L =
∑m

i=1wi .

Minimizing the objective function g(x) under these constraints is equivalent to

solving the initial program (CCP) with a confidence level of at least 1− α. We again

emphasize that the validity of this approximation is independent of any particular

assumption on the joint distribution of the random vector ξ , in particular with respect

to inter-component dependencies. This is appropriate especially for the cases when

such assumptions are not always verified.

In practice, although it is well illustrated on that problem, it should be stressed out

that our approach is not really appropriate in a mathematical programming setting,

since, for example, the reformulation of an original linear problem contains many

binary variables and it is more complex to deal with. However, the method can be

easily and efficiently adapted to heuristic approaches. Furthermore, we can make

use of the existing heuristic algorithms developed for the deterministic version of a

problem and extend them for treating the stochastic case.

123

Author's personal copy

O. Stan et al.

Table 3 General schema for a constructive algorithm

As we shall illustrate in the sequel through the example of graph partitioning, any

constructive algorithm relying on an oracle for testing solution admissibility can be

turned into an algorithm for the stochastic case by modifying the said oracle so as to

count the number of constraint violations and take an admissibility decision based on

the threshold k.

Table 3 shows, as an example, the general structure of a greedy algorithm for

the deterministic case as well as its adaptation for the stochastic case. The input is

problem specific and consists, for the deterministic case, in giving the structure of the

objective g, the constraint function G, the parameter vector ξ as well as the domain

of definition for the decision variables. For the chance-constrained version, in which

we consider ξ as random, we also specify a sample of size N S for ξ , the probability

level ε and in order to apply the robust binomial approach the confidence level α.

In both cases, R represents the set of decisions not yet made (or residual), D the

set of admissible decisions, g(S) the solution value for solution S, d∗ the current

optimal decision and S∗ the optimal overall solution, build in a greedy fashion. While

there are residual decisions to be made, an oracle is evaluating them for deciding

the admissible decisions. Between the admissible decisions, only the one with the

greatest improvement on the optimal solution value is kept and the overall solution S∗ is

updated. If no admissible decision is found by the oracle, the algorithms stops. As seen,

the onlymajor differencewhen considering chance constraints is in establishing the set

of admissible solutions,by using a stochastic oracle Os instead of the original one O

(line 3). The deterministic oracle is establishing the admissibility of a residual decision

by verifying the respect of the constraints, while the stochastic oracle is applying

the robust binomial approach and it verifies if a residual decision is stochastically

significant with a confidence level of 1 − α for the given sample by comparing the

number of constraints respected by the sample with the threshold k, established in

advance in function of N S, ε and α (see the procedures for O and Os in Table 4).

Of course, any optimization algorithm relying on an oracle to determine whether

or not a solution is admissible (e.g. a neighboring method) can be turned into an

123

Author's personal copy

The robust binomial approach

Table 4 Deterministic oracle versus stochastic oracle

algorithm solving the stochastic case using the same method. For example, since the

only difference between a generic local search method for the deterministic case and

its adaptation to the stochastic version consists in deciding which one of the neighbors

of the current solution is a possible admissible solution, the deterministic oracle has

to be replaced by a stochastic one. The structure of the oracles O and Os could be the

same as before or they could be implemented more efficiently, using the fact that the

neighbors are obtained from a current admissible solution for the deterministic and,

respectively, the stochastic case.

Such a context assures a practical and tractable implementation of our approach

even for cases when a very high number of constraints is demanded.

These situations can arise when ε is set to be really small (e.g. less than 10−5)

and thus, it is required to have a large minimal size of the sample. For example, a

problem with probability level ε = 10−5 and, accordingly, a confidence level α =

10−5, requires a sample of minimal size 106 which, although large, is not prohibitive.

Additionally, in order to obtain a more rapid computation, the operation of counting

the constraint violations can be parallelized without major effort2.

In order to test our approach, we applied it to the problem of stochastic partitioning

of large process networks, described in the next section.

3 Partitioning of process networks: an illustrative example

3.1 Experimental methodology

As already emphasized, this paper is centered in demonstrating the practical relevance

of solving a stochastic problem by integrating the robust binomial approach into an

existing heuristic developed for the deterministic case. As such, we are mainly inter-

ested in showing that having at our disposal an algorithm for the deterministic case, it

2 An one line OpenMP pragma will do the trick.

123

Author's personal copy

O. Stan et al.

is relatively easy in terms of software engineering (notably) to adapt it to the chance-

constrained version of the same problem. In the latter case, the solutions found are of

consistent quality (with respect to the ones provided by the original algorithm) and

more importantly, guaranteed to be robust to data variations with a confidence level

of 1− α and a required probability level of 1− ε.

Since for partitioning networks of processeswe have already developed amulti-start

constructive algorithm, we took advantage of the existing implementation in order to

adapt the admissibility oracle and solve the stochastic case.

In order to have a self-contained paper as well as for comparison purposes, the

original greedy algorithm for the deterministic problem is given in Sect. 3.6 and

the associated computational results are presented in Sect. 4. Therefore, we are not

claiming that this existing algorithm is a best-in-class graph partitioning algorithm.

What we do claim is that, using a slight adaptation of this algorithm, we can easily

obtain robust solutions. Thus our experiments focus on showing that the algorithm

for the stochastic version provides results consistent with those of the original one

and attempt to quantify the “price of robustness”. We also claim that our method for

leveraging an algorithm solving the stochastic case from one for the deterministic case

is generally applicable.

3.2 Problem statement

We begin by a formal description of the application case considered in this paper for

testing our approach.

The process networks partitioning problem can be stated as follows:

LetG = (V, A)be a directed graphwhere the set of verticesV =
{

v1, v2, . . . , v|V |
}

represents the tasks and the arcs (v,w) ∈ A correspond to the channels of a process

network. Let N be the set of disjoint nodes on a parallel architecture on which we

want to map our graph. The resources (essentially memory footprint and computing

core occupancy resources) are given by the set R and the capacities of the nodes are

given by the multi-dimensional array C ∈ R
+|R|. For the sake of simplicity, this study

will be limited to the case of homogeneous nodes, hence we suppose all nodes have

the same capacity.

Let us also define two functions. s : V −→ R
+|R|, is defined as a size function

for the vertex weights, with s(v)r being the weight of vertex v for resource r . The

second function, defined for the edges, is the affinity function q : A −→ R
+|R| where

q((v,w)) > 0 denotes the weight of edge (v,w) ∈ A and q((v,w)) = 0 if no edge

(v,w) exists between the vertices v and w. In the remaining of this paper, we will

use the following simplified notation: Qvw = q((v,w)) for each arc (v,w) ∈ A and

Svr = s(v)r , for r ∈ R and v ∈ V .

The partitioning problem we work on consists in finding an assignment of vertices

to nodes, denoted f : V −→ N , that satisfies the capacity constraints for all resources:

∑

v∈V : f (v)=n

Svr ≤ Cr , ∀n ∈ N ,∀r ∈ R, (3)

123

Author's personal copy

The robust binomial approach

by minimizing the objective function:

∑

(v,w)∈A: f (v) 6= f (w)

Qvw

As described below, a qualitative analysis of the sources of uncertainty (mainly

the execution times), motivates our choice for a model in which the weights of the

vertices, directly proportional to the execution times, are dependent random variables.

It also shows the difficulty of obtaining an analytical description of the distribution of

execution times and justifies our recourse to a non parametric sample-based approach.

Hence, the stochastic case we consider here is relatively new, even if the determin-

istic graph partitioning has already been extensively studied. The results of a survey

on the main related works are described in a later section.

3.3 Uncertainty sources

In the problem of process networks allocation, one of themain sources of uncertainties

lies in the intrinsic indeterminism of execution times for computing kernels of inter-

mediate granularity. This indeterminism is due in part to some of the characteristics

of the processor architecture such as the cache memories and memory access con-

trollers and is also inherently due to data dependent control flows (conditional branches

and loops).

Even if it is reasonable to assume, in embedded computing, that the probability

distributions of execution time have a bounded support (no infinite loops), we have

to cope with the fact that the distributions are intrinsically multimodal. For example,

for the computing kernel “for i = 1 to n if x then S1 else S2” with n taking values

between 1 and N , S1 and S2 being two linear sequences of instructions, the distribution

has 2N modes. Hence, it is difficult to model these probabilities laws through usual

distributions such as the normal or uniform ones, which are unimodal. Furthermore,

in the case of a process network, we cannot overlook the problem of dependency

between these random variables. An easy example consists in a target tracking pipeline

for which the execution times of each of the pipeline elementary tasks depend, to a

certain degree, on the number of effectively treated targets.

Thus, it is appropriate to assume that the execution times are random variables char-

acterized by complicated multimodal joint distributions, presumably better defined as

unions of orthotopes rather than, a Gaussian or even a mixture of Gaussians, although

we do not build further on this assumption in this paper. As such, it is rather difficult

to fully describe or estimate the parameters for such distributions, even by static pro-

gram analysis or by dynamic analysis (i.e., testing). Nevertheless, a static analysis of

the code could allow us to approximate the support of the probability law and give

us a feedback on the existing modes that have or have not been sampled, i.e. on the

representativeness of the tasks performed.

123

Author's personal copy

O. Stan et al.

3.4 State of art

3.4.1 Deterministic graph partitioning

Since the graph partitioning problem and especially the bisection problem (a particular

version of the problem for |N | = 2, also NP-hard) have been of great interest in the

past, many different resolution methods were developed for treating the deterministic

case. There are several surveys (see Fjällström 1998; Elsner 1997; Bichot and Durand

2010) resuming the existing algorithms for deterministic graph partitioning.

Due to the NP-hardness of graph partitioning, the literature addressing the exact

resolution of this problem is relatively sparse. Among the most successful exact deter-

ministic approaches are the branch-and-price or column generation methods (Johnson

et al. 1993; Mehrotra and Trick 1997). Interesting results are also obtained in Fer-

reira et al. (1998), in which the polyhedral structure of the problem is analyzed and

classes of strong valid inequalities are included in a branch-and-cut algorithm. We

should also mention the existence of a few approaches exploiting lower bounds for

the problem. Particularly new lower bounds of rather good quality were found using

semidefinite programming (Lisser and Rendl 2003) as well as multi-commodity flows

(Sensen 2001). Nevertheless, these exact methods can handle only relatively small

graphs, being too slow to be applied to larger graphs, with, for example, more than

a thousand vertices. Mainly for this reason, these methods are not adequate to our

application where we have to partition instances with a number of vertices varying

roughly between 500 and 4000 on 16–64 nodes.

Therefore, we turn our attention to heuristics, the usual and more practical methods

for tackling such problems. There are a large number of such methods, either global

or local, that differ with respect to cost (time and memory space required to run the

algorithm) and partition quality, i.e. the optimal solution or the cut size. One of the

earliest and most popular algorithms, due to Kernighan and Lin (1970), originally

proposed for the bisection case, is of quite high complexity (O(|E |) for Fiduccia

adaptation (Fiduccia andMattheyses 1982) or in the original version O(|E |2log(|E |)))

(for a graphwith |E | edges) anddemands a lot of computational effort for being adapted

to the capacitated generalized problem. Among local metaheuristics, one of the most

used to solve the graph partitioning problem is simulated annealing, mainly because

of its simplicity (Johnson et al. 1989; Kirkpatrick 1984). However, it highly depends

on the structure of the problem and for large sized instances, the required execution

timemay become prohibitive. For very large graphs, rather good results were found by

global approaches, such as the multilevel and hierarchical methods (Hendrickson and

Leland 1995; Karypis and Kumar 1998) or the more recent method of fusion–fission

(Bichot 2007).

3.4.2 Stochastic graph partitioning

Previous work related to the stochastic form of the problem treated in the present paper

is quite scarce. Fan et Pardalos studied a problem relatively close to ours: partition the

vertex set of a graph into several disjoints subsets so that the sum of weights of the

edges between the disjoint subsets is minimized, with a cardinality constraint on each

123

Author's personal copy

The robust binomial approach

subset and the uncertainty affecting the edge weights. In Fan and Pardalos (2010),

assuming there is no information on the probability distribution other than that the

weights on the links are independent and bounded in known intervals, they formulate

the problem using a robust optimization model, similar to Bertsimas and Sim (2004).

The equivalent linear programming formulation is then solved by an algorithm based

on a decomposition method. In a more recent study, Fan et al. (2011) introduce the

two-stage stochastic graph partitioning, assuming that the distribution of edge weights

has finite explicit scenarios. Having as objective to minimize the expected weight of

edges in the set of cuts over all scenarios, they present a nonlinear stochastic mixed

integer model and propose an equivalent integer programming formulation for solving

the problem using CPLEX. Taskin (2009) study the stochastic edge-partition problem,

where the edge weights are uncertain, and are realized only after the node-to-subgraph

assignments have been made. They introduce a two-stage cutting plane algorithmwith

integer variables in both stages and, to overcome the computational difficulties, they

also prescribe a hybrid integer/constraint programming method as alternative.

Also, Barbu and Song-Chun (2003) addresses a graph partitioning problem with

probabilities on the graph edges, using Markov-based techniques related to the simu-

lated annealing method in order to solve a class of image segmentation problems.

The approaches above differ in several aspects from our study. First, in our case,

the problem formulation is not the same, dealing with multidimensional capacity

constraints on the nodes instead of cardinality constraints. Consequently, uncertainty

is addressed in a different manner, the assumption of uncertainty being made on the

weights of the vertices rather than on the weights of the edges. Finally, we remark

that the existing methods are exact and thus, mostly suited for small-size instances of

the problem, the numerical experiments being performed on graphs with at most 100

vertices. On the contrary, for the processes placement problem we are interested in

practice to partition much larger graphs.

3.5 Relative affinity

Before describing the randomized greedy heuristic our stochastic algorithm is based

on, let us recall the notion of relative affinity, initially introduced in David et al. (1991)

(see also Stan et al. 2012 for details).

Let S and T be two disjoint subsets of V .

Definition 1 The affinity of S for T is given by :

α(S, T) =
∑

(v,w)∈δ(S,T)

Qvw.

with δ(S, T) = {(v,w) : v ∈ S;w ∈ T }.

It follows that α(S, T) = α(T, S).

Definition 2 The total affinity of S (similarly for T) is given by

β(S) = α(S, V \S).

123

Author's personal copy

O. Stan et al.

Fig. 1 a A graph example; b 2-partition using the relative affinity (David et al. 1991)

Definition 3 The relative affinity of S for T is defined as

γ (S, T) =
1

2
α(S, T)

(

1

β(S)
+

1

β(T)

)

where α(S,T)
β(S)

represents the contribution to the total affinity of S of the edges adjacent

to S and T .

Let us illustrate these notions through a simple example (David et al. 1991) on the

undirected graph shown in Fig. 1a.We suppose that we have only one resource and that

all the vertices have unitary weights and we want to partition the graph into two nodes

of capacity equal to 2. A greedy partitioning using the total affinity would have begun

by putting together the vertices B and C , resulting in a solution of cost 4. Instead, a

greedy partitioning based on relative affinity would match the vertices A and B (and

C and D), with γ ({A}, {B}) = γ ({C}, {D}) = 0.7 and γ ({B}, {C}) = 0.6, obtaining

a solution of cost 3 (see Fig. 1b).

3.6 Randomized greedy algorithm for the deterministic case

In order to fully illustrate ourmethodology for leveraging an existing algorithm solving

the deterministic version of a problem to the stochastic case let us describe our starting

point (which we do not claim to be the ultimate graph partitioning heuristic, emphasis

being made on the leverage-for-the-stochastic-case methodology).

Initially described in Sirdey and David (2009), the randomized greedy algorithm

we are adapting, is based on the relative affinities of admissible assignments and

admissible fusions.

Let W be a set of vertices not yet assigned to a node.

Definition 4 An assignment of vertex v to node n is admissible if it satisfies the

capacity constraints for node n, such that for every resource r ∈ R:

Svr +
∑

w∈V \W : f (w)=n

Swr ≤ Cr

123

Author's personal copy

The robust binomial approach

Definition 5 A fusion between the nodes n and m is admissible if for every resource

r ∈ R:

∑

v∈V \W : f (v)=n

Svr +
∑

v∈V \W : f (v)=m

Svr ≤ Cr

The assignments are favored over fusions and, when tie-breaking with respect to

relative affinity, the heuristic prioritizes the assignment of verticeswith heavierweights

on less loaded nodes and the fusion of the most loaded nodes. We also formally define

the relations of heavier vertex and more loaded node which are being used in the

algorithm for the multidimensional case.

Definition 6 The vertex v is smaller or lighter than the vertex w if:

max
r∈R

Svr

Cr

< max
r∈R

Swr

Cr

(4)

Definition 7 The node n is more loaded than the node m if:

max
r∈R

1

Cr

Cr −
∑

v∈V \W : f (v)=n

Svr

 < max
r∈R

1

Cr

Cr −
∑

v∈V \W : f (v)=m

Svr

The algorithm, to which we will refer as RG_PART, takes as input the set of

unassigned vertices W (initially equal to V), the set of nodes N , the set of resources

R and the vertex weights Svr . A basic version of the algorithm is given underneath.

Algorithm 1 RG_PART

Input: W , N , R, Svr for each {v ∈ V , r ∈ R}

1: Initialization W = V

2: Assign the first min(|V |, |N |) vertices in lexicographic order to the |N | nodes and update the set W

3: Find an admissible assignment (v∗, n∗) (v∗ ∈ W , n∗ ∈ N) cf. Definition 4, if any, with maximal relative

affinity:

γ1 = γ ({v∗}, {v ∈ V \W : f (v) = n∗})

4: Find an admissible fusion (n∗1, n∗2) (n
∗
1 ∈ N , n∗2 ∈ N) cf. Definition 5, if any, with maximal relative

affinity:

γ2 = γ ({v ∈ V \W : f (v) = n∗1}, {v ∈ V \W : f (v) = n∗2})

5: If γ1 ≥ γ2 then assign v∗ to n∗ and update the set W . Else merge n∗1 and n∗2
6: If W is empty or there is neither any admissible assignment nor any admissible fusion, stop. Else, go to

Step 3.

Output: assignment f

Since greedy algorithms tend to sometimes get trapped with poor quality solutions

(due to the fact that the algorithm may, by construction, fail to compensate an early

bad decision), a type of diversification strategy is required. This is the reason why a

123

Author's personal copy

O. Stan et al.

randomized version of the algorithm is executed several times (i.e. in a a multi-start

fashion). The randomization strategy consists in executing the algorithm first on the

list of vertices sorted by their decreasing weights (see step 2 of the algorithm and for

multi-resource case, Eq. 4) and several times afterwards using randomized versions

of the list of vertices.

The algorithm being given for the deterministic version of our problem, we can

now turn to the case we are interested in, the one in which the weights of the vertices

are uncertain.

3.7 Randomized greedy algorithm: chance-constrained version

The sample based approach described previously can be easily adapted for solving the

stochastic version of the capacitated graph partitioning problem. All we have to do is

to combine the statistical hypothesis test explained before with the heuristic algorithm

RG_PART by counting the number of constraint violations.

For the stochastic version of our graph partitioning problem, formally stated in

Sect. 3.2, we make the assumptions that the task weights Svr are random variables and

that we dispose of a relevant sample of N S independent and identically distributed

realizations of the uncertain vector of task weights. For k = 1 to N S, let S̃
(k)
vr be the

realization of the k-th observation.

Let us also note the event enr = {
∑

v∈V : f (v)=n Svr ≤ Cr }. The capacity constraint,

expressed for the deterministic case in Eq. (3), becomes:

P

(

∧

n∈N

∧

r∈R

enr

)

≥ 1− ε.

In order to ensure that the probabilistic constraint is satisfied with a given confidence

level at every step of the algorithm, it is necessary to redefine the notions of admissible

assignment and admissible fusion.

Definition 8 An assignment of vertex v to node n is stochastically admissible if the

sum:

N S
∑

k=1

χ̃ ({∃n′ 6= n, ∃r :
∑

w: f (w)=n′

S̃(k)
wr > Cr } ∨ {∃r : S̃(k)

vr +
∑

w: f (w)=n′

S̃(k)
wr > Cr }),

is less than or equal to N S − k(N S, 1− ε, α), with χ̃(Pa) = 1 if and only ifPa is

true.

This calculation can be simplified by using an ad hoc data structure, a boolean bi-

dimensional array of size |N | × N S, denoted t , indicating for the partial current

partitioning if, for every node, the sample k has already induced a violation.

123

Author's personal copy

The robust binomial approach

Thus, the assignment of a vertex v to a node n is stochastically admissible if:

N S
∑

k=1

χ̃(t[n′, k] ∨ {∃r : S̃(k)
vr +

∑

w: f (w)=n′

S̃(k)
wr > Cr }) ≤ N S − k(N S, 1− ε, α)

With the use of the boolean array, the computation of an admissible assignment

increases in complexity linearly, with a factor of N S, compared to the deterministic

case.

If the vertex v is effectively assigned to node n then the boolean array is updated

with:

t[n, k] := t[n, k] ∨ (∃r : S̃(k)
vr +

∑

w: f (w)=n

S̃(k)
wr > Cr)

Definition 9 A fusion between nodes n andm is stochastically admissible if the sum:

N S
∑

k=1

χ̃ ({∃n′, r :
∑

w: f (w)=n′

S̃(k)
wr > Cr } ∨ {∃r :

∑

w: f (w)=n

S̃(k)
wr +

∑

v: f (v)=m

S̃(k)
vr > Cr }),

is less than or equal to N S − k(N S, 1 − ε, α), with χ̃(P f) = 1 if and only if the

predicateP f is true.

Analogously, we can simplify P f by using the same boolean matrix |N | × N S.

Once the fusion is realized, the entries for nodes n and m are updated as follows:

t[n, k] := t[n, k] ∨ (∃r :
∑

w: f (w)=n

S̃(k)
wr +

∑

v: f (v)=m

S̃(k)
vr > Cr)

t[m, k] := f alse

As for the computation complexity, we remark a linear increase with a factor of N S

in comparison to the deterministic version.

Also, since we have to deal with a sample of size N S, we can redefine the way we

compare the vertices and the nodes weights, by taking into account the average over

all realizations as follows.

Definition 10 The vertex v is smaller or lighter in average than the vertex w if:

max
r∈R

∑N S
k=1 S̃

(k)
vr

N S ∗ Cr

< max
r∈R

∑N S
k=1 S̃

(k)
wr

N S ∗ Cr

Definition 11 The node n is more loaded than the node m in average if:

max
r∈R

1

Cr

(

Cr −

∑

v∈V \W : f (v)=n S̃
(k)
vr

N S

)

< max
r∈R

1

Cr

(

Cr −

∑

v∈V \W : f (v)=m S̃
(k)
vr

N S

)

123

Author's personal copy

O. Stan et al.

The above definitions can then be easily integrated in the algorithm described

in Sect. 3.6, without any major destructuring. As such, the algorithm for solving the

chance-constrained version of the node capacitated graph partitioning problem, named

RG_PART_STOCH is as follows.

Algorithm 2 RG_PART_STOCH

Input: W , N , R, ε, α, N S, S̃
(k)
vr for each {v ∈ V , r ∈ R, k = 1...N S }

1: Initialization W = V

2: Assign the first min(|V |, |N |) vertices in lexicographic order to the |N | nodes and update the set W

3: Find an admissible stochastic assignment (v∗, n∗) (v∗ ∈ W , n∗ ∈ N) cf. Definition 8, if any, with

maximal relative affinity:

γ1 = γ ({v∗}, {v ∈ V \W : f (v) = n∗})

4: Find an admissible stochastic fusion (n∗1, n∗2) (n
∗
1 ∈ N , n∗2 ∈ N) cf. Definition 9, if any, with maximal

relative affinity:

γ2 = γ ({v ∈ V \W : f (v) = n∗1}, {v ∈ V \W : f (v) = n∗2})

5: If γ1 ≥ γ2 then assign v∗ to n∗ and update the set W . Else merge n∗1 and n∗2 .

6: If W is empty or there is neither any admissible assignment nor any admissible fusion, stop. Else, go to

Step 3.

Output: assignment f

It should be noted that the only remarkable differences between the algorithm

RG_PART and its stochastic counterpart RG_PART_STOCH are in Step 3 and Step

4 when deciding if the current assignment or fusion is admissible. Additionally, the

algorithm for the chance-constrained case needs as input the N S realizations of Svr , the

tasks weights for each resource, ε the prescribed probability level and α the confidence

level.

By using the statistical hypothesis testing within a heuristic approach, we also over-

come the computational effort of taking into account the uncertainties of the weights

of the vertices. We could even further improve the performances of the heuristic by

parallelizing the computations of admissible assignments and of admissible fusions.

4 Computational results

In this section, we report on the computation experiments of applying the above

sample-based randomized greedy heuristic to the chance-constrained version of graph

partitioning with uncertainty affecting the weights of the vertices. All these experi-

ments have been carried out on a Linux PC workstation, with a 3.80 GHz Pentium(R)

processor, 3 GB of memory and Ubuntu 10.04 as operating system. In the rest of the

section, we report about the benchmark and the random variables used in our com-

putation, different evaluation measures and we discuss the results of the heuristic for

the chance-constrained version in comparison with the heuristic for the deterministic

case.

123

Author's personal copy

The robust binomial approach

Table 5 Computational results

of RG_PART heuristic for

deterministic case: grid

problems

Inst. #Vertices #Nodes C Multi

Grid 4× 4 16 4 4 8

Grid 10× 10 100 5 20 28

Grid 23× 23 529 14 40 150

4.1 Benchmark and uncertain parameters generation

Since, to the best of our knowledge, there are no probabilistic instances defined for

the graph partitioning problem, we tested our algorithm on two modified sets of test

problems, originally intended for the deterministic case.

The first set of instances consists of some examples of grids, representative in size

for our application. Besides, these instances are easy to modify and we can use them

to test different configurations of the parameters for our method. The second set is

defined by instances publicly available defined in Johnson et al. (1993) and initially

used for bisection. The tests on this second set were performed in order to confirm

the effectiveness of our stochastic algorithm (both in terms of solution quality and

running time) on a set of representative instances.

It should be noted that the instance “Grid 23×23”, from the first data set, with 529

vertices and 16 nodes, is the closest in size to the real instances we have to deal with

in our application context, at least as a first step.

The number of vertices for Johnson instances varies between 124 and 1000 and,

for both sets, we consider the case of mono-dimensional resources.

In the deterministic case, the tests were performed for unitary weights for edges

and vertices.

We have generated the random variables representing the weights of the vertices by

simulating a joint bimodal distribution. The two modes are uniform in their intervals

and selected in an equally likely manner.

The first mode is represented by the hypercube:

[0.8, 0.9]|V |,

and the second one, by the hypercube:

[1.1, 1.2]|V |.

4.2 Results for the deterministic version

Table 5 shows the experimental results obtained by applying the RG_PART heuristic

for graph partitioning on the first data set with deterministic vertices weights. All the

results were obtained for the monodimensional case (the capacity of each node is

indicated in column “C”) with unitary weights for edges and vertices. The column

“Multi” in Table 5 shows the solutions found by running the multi-start version of the

heuristic (with 10 iterations).

The RG_PART heuristic was applied on the larger sizes instances of Johnson et

al. (1993), with unitary weights for edges and vertices. As illustrated by Table 6, the

123

Author's personal copy

O. Stan et al.

Table 6 Computational results

of RG_PART heuristic for

deterministic case: Johnson

instances

Name |V | C Best known Multi

Gsub.500 500 250 206 236

G1000.0025 1,000 500 95 118

G1000.005 1,000 500 445 509

G1000.01 1,000 500 1,362 1,461

G1000.02 1,000 500 3,382 3,526

G124.02 124 62 13* 15

G124.04 124 62 63* 68

G124.08 124 62 178 183

G124.16 124 62 449 471

G250.01 250 125 29* 36

G250.02 250 125 114 127

G250.04 250 125 357 378

G250.08 250 125 828 855

G500.005 500 250 49* 61

G500.01 500 250 218 253

G500.02 500 250 626 669

G500.04 500 250 1,744 1,825

U1000.05 1,000 500 1* 6

U1000.10 1,000 500 39* 69

U1000.20 1,000 500 222 299

U1000.40 1,000 500 737 866

U500.05 500 250 2* 12

U500.10 500 250 26* 68

U500.20 500 250 178* 196

U500.40 500 250 412 412

solutions are reasonably close to the optimum (*) or to the best known solutions (col-

umn “Best known”). Furthermore, for most instances we observed that the solutions

values found have an average differential approximation ratio (Demange and Paschos

1996) of 5.22% compared to the best known value.

Although these results are only ofmoderate quality, our goal in the experimental part

of this paper, as already stated in Sect. 3.1, is to provide them for self-contentedness

and for serving, in the next section, as a starting point for measuring “the price of

robustness” of the solutions obtained by the algorithm derived for the stochastic case.

4.3 Results for the chance-constrained version

We have tested our adaptation of the algorithm for the stochastic case on the same

problems varying the parameters ε and α in the range {0.01, 0.05}. To obtain a set of

stochastic instances, we have considered that the weights of the vertices are random

variables with the aforementioned bimodal distribution and we generated correspond-

ing samples of size 100 and respectively 1000. Choosing a smaller size for the sample

123

Author's personal copy

The robust binomial approach

Table 7 Computational results

of the stochastic method for

N S = 100, ε = 0.05, α = 0.05:

grid problems

1st test 2nd test

Name #Nodes Sol Time (s) C Sol Time (s)

Grid 4× 4 6 14 ≈0 4.71 12 ≈0

Grid 10× 10 6 38 0.02 23.3 29 0.01

Grid 23× 23 16 182 1.12 44.1 173 0.99

Table 8 Computational results

of the stochastic method for

N S = 1000, ε = 0.05,

α = 0.05: grid problems

1st test 2nd test

Name #Nodes Sol Time (s) C Sol Time (s)

Grid 4× 4 6 14 ≈0 4.712 12 ≈0

Grid 10× 10 6 37 0.16 23.273 37 0.13

Grid 23× 23 16 182 11.23 44.13 172 9.65

Table 9 Computational results

of the stochastic method for

N S = 1000, ε = 0.01,

α = 0.01: grid problems

1st test 2nd test

Name #Nodes Sol Time (s) C Sol Time (s)

Grid 4× 4 6 14 ≈ 0 4.74 10 ≈ 0

Grid 10× 10 6 37 0.15 23.36 37 0.13

Grid 23× 23 16 182 10.75 44.183 193 9.67

may make the solution infeasible, and larger values of N S increase computation time

of the problem.

Themethod has been implemented in C and, for each instance, 10 random iterations

of our algorithm were executed. Tables 7, 8 and 9 summarize the numerical results for

the grid problems for different values of the parameters N S, ε andα. The computational

results for the second data set, the Johnson instances, are reported in Tables 10, 11 and

12.

For each instance from the data sets, we performed two tests. The first test consists in

keeping the same node capacity as for deterministic case (see columns C from Tables

5, 6) and progressively increasing the number of nodes used in the deterministic case

until the probabilistic constraint is satisfied.

The numerical results of this test, reported in section “1st test” of Tables 7, 8, 9,

10, 11 and 12 are: the minimal number of nodes for which the probabilistic constraint

is respected (column “#Nodes”), the solution value (column “Sol”) and the average

execution time for 10 iterations in seconds (column “Time”).

For the second test, we maintain the same number of nodes as in the deterministic

case, but we gradually increase the capacity of all nodes (starting from one used in

the deterministic case) until finding a feasible solution, satisfying the probabilistic

constraint.

The results of this second test, reported in section “2nd test” of Tables 7, 8, 9, 10, 11

and 12 are: the minimal capacity of each node for which we obtain a feasible solution

(column “C”), the solution value (column “Sol”) and the average execution time for

10 iterations in seconds (column “Time”).

123

Author's personal copy

O. Stan et al.

Table 10 Computational results

of the stochastic method for

N S = 100, ε = 0.05,

1− α = 0.95: Johnson problems

1st test 2nd test

Name #Nodes Sol Time (s) C Sol Time (s)

Gsub.500 3 301 5.57 288.300 244 5.55

G1000.0025 3 135 58.97 575.800 131 70.11

G1000.005 3 649 62.23 575.900 513 72.10

G1000.01 3 1,865 65.30 575.900 1,456 77.36

G1000.02 3 4,481 68.78 575.940 3,579 74.10

G124.02 3 18 0.16 71.650 21 0.11

G124.04 3 91 0.16 71.650 72 0.11

G124.08 3 233 0.16 71.670 199 0.11

G124.16 3 585 0.16 71.680 475 0.12

G250.01 3 40 0.75 144.200 38 0.64

G250.02 3 162 0.76 144.260 128 0.63

G250.04 3 485 0.78 144.250 393 0.64

G250.08 3 1,074 0.77 144.200 862 0.65

G500.005 3 68 5.14 288.370 67 5.20

G500.01 3 308 5.36 288.340 269 5.04

G500.02 3 860 5.42 288.280 679 5.44

G500.04 3 2,287 5.56 288.270 1,835 5.60

U1000.05 3 17 67.76 576.100 16 73.50

U1000.10 3 101 65.55 576.100 110 77.74

U1000.20 3 417 67.80 576.200 303 75.23

U1000.40 3 1,370 68.26 576.300 1,018 77.00

U500.05 3 10 5.05 288.390 7 5.27

U500.10 3 88 5.58 288.270 66 5.38

U500.20 3 278 5.49 288.200 396 5.43

U500.40 3 663 5.23 288.380 574 5.28

It is worthwhile noting that the solutions obtained in the second test, by increasing

the node capacity, are of better quality than the solutions of the first experiment (see

columns “Sol”) and can be adjustable more accurately. For example, in Table 8 for

Grid 10× 10, for finding a feasible solution, we must add two more nodes but in this

case the solution found is too conservative since all the constraints are verified. Since,

however, in practice it is easier to modify the number of nodes than the capacity of

each node, we also investigated the results found by the first test.

Our main purpose with these tests is to get an idea of the cost of the robustness of

the solutions, independently of concrete application constraints.

In evaluating the performance of our heuristic method, between the main aspects

we consider are: the capacity and the number of nodes needed for finding a feasible

solution, the time factor and the robustness and quality of the solutions.

In our first test, we were interested in the number of nodes needed for the stochastic

case compared to the deterministic one. Our computational results show that the ratio

between the number of nodes for stochastic partitioning and the number of nodes for

123

Author's personal copy

The robust binomial approach

Table 11 Computational results

of the stochastic method for

N S = 1000, ε = 0.05,

1− α = 0.95: Johnson problems

1st test 2nd test

Name #Nodes Sol Time (s) C Sol Time (s)

Gsub.500 3 298 26.72 288.240 252 18.94

G1000.0025 3 136 139.30 576.030 134 119.48

G1000.005 3 653 143.70 576.060 528 123.52

G1000.01 3 1,866 141.00 576.060 1,470 125.70

G1000.02 3 4,482 140.86 576.040 3,599 127.95

G124.02 3 17 1.39 71.662 17 0.91

G124.04 3 87 1.37 71.654 68 0.92

G124.08 3 237 1.36 71.660 182 0.93

G124.16 3 599 1.35 71.653 479 0.91

G250.01 3 39 5.84 144.310 39 4.00

G250.02 3 163 5.81 144.310 129 4.04

G250.04 3 483 5.78 144.295 387 3.99

G250.08 3 1,080 5.75 144.257 872 3.98

G500.005 3 69 26.67 288.240 68 18.88

G500.01 3 320 26.74 288.240 258 19.00

G500.02 3 853 26.87 288.250 668 19.15

G500.04 3 2,283 26.76 288.250 1,829 19.18

U1000.05 3 18 140.90 576.050 6 125.70

U1000.10 3 74 139.40 576.060 115 126.80

U1000.20 3 417 141.40 576.030 339 126.80

U1000.40 3 1,370 143.51 576.080 1,032 132.60

U500.05 3 16 26.73 288.300 2 19.49

U500.10 3 105 26.90 288.260 75 19.32

U500.20 3 289 27.15 288.250 289 19.21

U500.40 3 663 26.73 288.240 569 18.89

deterministic partitioning for the same instance is 1.5, except for Grid 23 × 23, for

which the ratio is equal to ≈1.14. The same ratio of 1.5 was found for the Johnson

instances.

For the second test, we analyzed the required increase in capacity for solving the

stochastic version of the problems. The stochastic solutions of the instances reported

in Tables 7, 8 and 9 are obtained for an equally large increase in the capacity of

the nodes in the order of 1.1. For the Johnson instances, the capacity of nodes for

stochastic partitioning is superior to the nominal capacity with ≈1.15. As one may

expect, keeping the same probability and confidence levels and changing the sample

size does not significantly affect the minimal capacity of the nodes for which a valid

solution is found. On the contrary, imposing a higher probability and confidence levels

demands a minimal capacity of nodes slightly larger (in the order of 0.001). Following

the run of each instance, we have also observed a particular behavior consisting in a

threshold effect of the solutions, sensible to the node capacity variations. One example

is the problem U1000.10 for which an augmentation of the capacity from 576.06 to

576.20 results in a largely better solution (69 against 115).

123

Author's personal copy

O. Stan et al.

Table 12 Computational results

of the stochastic method for

N S = 1000, ε = 0.01,

1− α = 0.99: Johnson problems

1st test 2nd test

Name #Nodes Sol Time (s) C Sol Time (s)

Gsub.500 3 298 25.32 288.610 240 18.94

G1000.0025 3 137 141 576.470 132 121.51

G1000.005 3 654 140.77 576.520 519 127.54

G1000.01 3 1,870 141.66 576.520 1,467 125.74

G1000.02 3 4,475 141.23 576.530 3,544 128.78

G124.02 3 17 1.35 71.865 17 0.9

G124.04 3 87 1.34 71.825 73 0.92

G124.08 3 237 1.33 71.851 187 0.92

G124.16 3 599 1.33 71.831 484 0.91

G250.01 3 39 5.73 144.548 40 4

G250.02 3 163 5.73 144.530 132 4

G250.04 3 483 5.65 144.515 383 4.06

G250.08 3 1,085 5.65 144.523 856 3.95

G500.005 3 69 25.33 288.490 68 19.38

G500.01 3 320 25.32 288.540 258 19

G500.02 3 853 25.2 288.530 687 19.6

G500.04 3 2,283 25.25 288.520 1,852 19.3

U1000.05 3 20 141.79 576.550 1 125.76

U1000.10 3 74 140.69 576.520 90 128.03

U1000.20 3 421 143.14 576.570 339 131.14

U1000.40 3 1,376 145.14 576.580 1,137 127.47

U500.05 3 16 26.73 288.570 2 19.17

U500.10 3 105 25.75 288.560 62 19.03

U500.20 3 289 25.4 288.560 289 19.15

U500.40 3 663 25.08 288.570 569 19.41

Concerning the time factor, the overall execution time of our method depends

mainly on the number of vertices and on the size of the sample. We note that the

running time needed to solve Johnson instances is considerably higher than the time

required for the grid problems, the reason being the presence of instances of larger

size (e.g., G1000.0025–G1000.02, U1000.05–U1000.40). As expected, the larger is

the sample size, the higher is the computation time, with an average of 48.04 s. for a

sample size of 1000 (Table 11) against 25.93 s. for a sample size of 100 (Table 10) for

the second test. It should also be noted that the computation time for the first test is, in

average, superior to the time for finding solutions in the second one. By comparison

of Tables 11 and 12, it appears that when a higher probability level ε and confidence

level α are imposed, a slightly higher execution time is needed.

Although these results could be improved (e.g. by code optimization and paral-

lelism), such execution durations are already acceptable in our application context

with respect to the usual compilation duration of a dataflow process network on a

many core architecture.

123

Author's personal copy

The robust binomial approach

The running times found for the stochastic version of the algorithm confirm the

theoretical remarks (see Sect. 3.7) on a linear increase in complexity with a factor of

N S in comparison of the deterministic case.

In order to measure the quality and the robustness of the stochastic solutions, the

algorithmRG_PARTwas re-runwith the same input parameters as the ones foundwith

the chance-constrained method. We kept the same number of nodes and respectively

the same capacity of each node as the ones for which the chance-constrained methods

found feasible solutions andwe considered unitaryweights for arcs andunitaryweights

for tasks (which is the expected value of the distribution of our uncertain data).

For the first test, consisting in increasing the number of nodes, the quality of the

stochastic solutions is, as expected, almost always worse than for the deterministic

version and than for the solutions found by the second test. One exception is the

instance U500.05, from Table 10 but this result is assumed to be due to the heuristic

nature of our approach, which, by construction, provides no guarantees with respect

to monotony.

Instead, the stochastic solutions of the second test are quite often close in quality to

the solutions found when running RG_PART algorithm. By analyzing Tables 10 and

11, for ε, α = 0.05 we found out that there are 14 and respectively 15 instances with a

gap in the stochastic solution quality of less than 5% from the deterministic solutions.

When analyzing the results for a probability level of 0.99 and a level of confidence of

0.99 (Table 12), we remark a number of 14 stochastic solutions close (a relative 5%

gap) to the deterministic solutions.

By comparing the quality of solutions for different values of the input parameters

(N S, ε,α) it comes out that for the same probability and confidence levels, the obtained

solutionswhenvarying the sample size are quite similar, revealing that the performance

of our algorithm does not deteriorate as the number of samples increases. It should be

noted that it is however necessary to determine the minimal size of the sample needed

to solve the problem with the required probability level. The required sample size for

ε, α = 0.01, is at least 459, which justifies our choice not to conduct tests for these

values on the samples of size 100.

Concerning the robustness of the solutions found by the presented approach, we

measured the number of times the deterministic solution is not satisfied on the used

samples. The percentage of samples on which the deterministic solution is not satis-

fying the capacity constraints 3 is, in average, for Tables 10, 11 and 12 between 48.24

and 50.04%.

Analyzing the overall results, we observe that our stochastic heuristic confirms the

capacity of computing good solutions, within an admissible average running time,

even for large instances. The quality of the solutions is comparable to the deter-

ministic case (i.e. the “price of robustness” is not too high) and moreover we guar-

antee that our solutions are robust to the uncertainties affecting the weights of the

vertices.

123

personal copy

O. Stan et al.

5 Conclusion

In this paper, we introduced a non-parametric and general sample-based method

for chance-constrained programs which, using statistical hypothesis testing, can be

applied to leverage existing heuristic algorithms for the deterministic case for solving

the stochastic version of the same problem. The proposed methodology is suitable to

approximate chance-constrained problems where an analysis of the uncertainty data

reveals complex probability distributions, for which analytical descriptions are dif-

ficult to compute and general assumptions are inappropriate. As such, the approach

can be successfully applied to many practical engineering problems, in which sam-

ples on random variables are available, providing robust solutions guaranteed with a

predefined statistically significant level of confidence.

Having at our disposal an admissibility oracle-based algorithm already developed

for the deterministic version of a problem, it is reasonably straightforward to make the

necessary changes in order to treat the stochastic case. For obtaining solutions to the

chance-constrained problem (with probability level of 1 − ε) which are statistically

meaningful with a confidence level of 1− α, all we have to do is to modify the oracle

deciding on the admissibility of a solution. In the stochastic method, this admissibility

oracle integrates the robust binomial approach, by verifying that the number of con-

straints which are respected exceeds a threshold k established based on the sample

size, the prescribed probability level 1− ε and the confidence level 1− α.

We can also remark that the robust binomial approach is general. It can be easily

adapted to any stochastic program, including the individual chance-constrained pro-

grams, by counting the number of times the probablistic constraints are satisfied in a

realization of the sample.

As an illustration of the practical relevance of this approach, we addressed the prob-

lem of chance-constrained partitioning of communicating process networks, which

arises in compilation for embedded parallel systems. After a brief analysis of the

random data, we proposed an heuristic algorithm, combining sampling and statisti-

cal hypothesis testing with a randomized greedy method originally designed for the

deterministic case.

Numerical results showed that the obtained solutions have often a quality consistent

with those computed for the deterministic version.

More importantly, the solutions found are robust and guaranteed with a preset sta-

tistical significance level, to hold to data variations affecting the constraints. We also

showed that not taking into account the stochastic nature of our data and considering

only the deterministic casemay lead to non feasible solutions with quite high probabil-

ity (in average 50% of cases). Furthermore, this approach can solve with an acceptable

computation time problems close in dimensions to the real instances a compiler would

have to treat.

In further work, we plan to investigate two directions. The first one is to design a

parallelized and more efficient implementation of our method. This would allow the

treatment of problems with large instances or with a high number of constraints or

those which demand a high level of robustness (meaning values of ε inferior to 10−5).

Other direction concerns the application case, in which a more thorough analysis

and characterization of execution time distribution (using for example methods of

123

Author's personal copy

The robust binomial approach

static code analysis) would allow us to have a more accurate characterization of the

uncertainties affecting the weights of the processes. Other future directions of research

consist in the design and implementation of more heuristic strategies, combining the

sample approximation with other approximate algorithms, originally developed for

solving deterministic problems.

Acknowledgments The authors thank the anonymous referees for several suggestions that led to improve-

ments in the paper.

References

Aringhieri, R.: Solving chance-constrained programs combining tabu search and simulation. In: Proceedings

of the 3rd International Workshop on Experimental and Efficient Algorithms (WEA04). Lecture Notes

in Computer Science, vol. 3059, pp. 30–41. Springer, Berlin (2004)

Barbu, A., Zhu, S.-C.: Stochastic graph partition: generalizing the Swendsen–Wang method. Technical

Report Paper 2003010120, UCLA Department of Statistics (2003)

Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–13

(1999)

Beraldi, P., Ruszczynski, A.: Beam search heuristic to solve stochastic integer problems under probabilistic

constraints. Eur. J. Oper. Res. 167(1), 35–47 (2005)

Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

Bianchi, L., Dorigo, M., Gambardella, L., Gutjahr, W.: A survey on metaheuristics for stochastic combina-

torial optimization. Nat Comput 8(2), 239–287 (2006)

Bichot, C.H.: A new method, the fusion fission, for the relaxed-way graph partitioning problem, and com-

parisons with some multilevel algorithms. J. Math. Model. Algorithms 6(3), 319–344 (2007)

Bichot, C., Durand, N.: Partitionnement de graphe. Lavoisier, Paris (2010)

Calafiore, G., Campi, M.: Uncertain convex programs: randomized solutions and confidence levels. Math.

Program. 102, 25–46 (2005)

Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Automat. Control

51(5), 742–753 (2006)

Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to sto-

chastic programming of heating oil. Manag. Sci. 4(3), 235–263 (1958)

David, V., Fraboul, C., Rousselot, J.Y., Siron, P.: Etude et realisation d’une architecture modulaire et

reconfigurable: Projet MODULOR. Technical Report, 1/3364/DERI.ONERA (1991)

de Farias, D., Van Roy, B.: On constraint sampling in the linear programming approach to approximate

linear programming. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 3, pp.

2441–2446 (2003)

Demange, M., Paschos, V.: On an approximation measure founded on the links between optimization and

polynomial approximation theory. Theor. Comput. Sci. 158, 117–141 (1996)

Dentcheva, D., Prékopa, A., Ruszczynski, A.: Concavity and efficient points of discrete distributions in

probabilistic programming. Math. Program. 89, 55–77 (2000)

Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. CRC Press, Boca Raton (1994)

Elsner, U.: Graph partitioning—a survey. Technical Report, TU Chemnitz SFB393/97-27 (1997)

Fan, N., Pardalos, P.: Robust optimization of graph partitioning and critical node detection in analyzing

networks. In: Proceedings of the 4th Annual International Conference on Combinatorial Optimization

and Applications (COCOA 2010), pp. 170–183 (2010)

Fan, N., Zheng, Q., Pardalos, P.: On the two-stage stochastic graph partitioning problem. In: Proceedings

of the 5th Annual International Conference on Combinatorial Optimization and Applications (COCOA

2011), pp. 500–509 (2011)

Ferreira, C.E.,Martin, A., de Souza, C.,Weismantel, R.,Wolsey, L.: The node capacitated graph partitioning

problem: a computational study. Math. Program. 81, 229–256 (1998)

Fiduccia, C.M.,Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings

of the 19th Design Automation Conference. DAC ’82, pp. 175–181. IEEE Press, Piscataway (1982)

Fjällström, P.O.: Algorithms for graph partitioning: a survey. Linköping Electron. Articles Comput. Inf.

Sci. 3, 10 (1998)

123

Author's personal copy

O. Stan et al.

Gaivoronski, A., Lisser, A., Lopez, R., Xu, H.: Knapsack problem with probability constraints. J. Glob.

Optim. 49, 397–413 (2011)

Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput.

Sci. 1(3), 237–267 (1976)

Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proceedings of the 1995

ACM/IEEE Conference on Supercomputing (CDROM). ACM, New York (1995)

Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing: an experimental

evaluation; part i, graph partitioning. Oper. Res. 37(6), 865–892 (1989)

Johnson, E., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Math. Program. 62, 133–151 (1993)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM

J. Sci. Comput. 20, 359–392 (1998)

Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(1),

291–307 (1970)

Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975–986 (1984)

Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite programming. Math. Program. 95,

91–101 (2003)

Loughlin, D.H., Ranjithan, S.: Chance-constrained genetic algorithms. In: GECCO-99: Proceedings of the

Genetic and Evolutionary Computation Conference, pp. 369–376 (1999)

Mehrotra, A., Trick, M.: Cliques and clustering: a combinatorial approach. Oper. Res. Lett. 22, 1–12 (1997)

Pagnoncelli, B.K., Ahmed, S., Shapiro, A., Pardalos, P.M.: Sample average approximation method for

chance constrained programming: theory and applications. J. Optim. Theory Appl. 142, 399–416 (2009)

Prekopa, A.: Stochastic Programming. Kluwer Academic Publishers, Dordrecht (1995)

Sensen, N.: Lower bounds and exact algorithms for the graph partitioning problem using multicommodity

flows. In: Meyer auF der Heide, F. (ed.) Lecture Notes in Computer Science, vol. 2161, pp. 391–403.

Springer, Berlin (2001)

Sirdey, R., David, V.: Approches heuristiques des problèmes de partitionnement, placement et routage

de rèseaux de processus sur architectures parallèles clusterisées. Technical Report, CEA LIST

DTSI/SARC/09-470/RS (2009)

Stan, O., Sirdey, R., Carlier, J., Nace, D.: A heuristic algorithm for stochastic partitioning of process

networks. In: ICSTCC (2012)

Tanner, M.W., Beier, E.B.: A general heuristic method for joint chance-constrained stochastic programs

with discretely distributed parameters (2007). http://www.optimization-online.org/DB_HTML/2007/

08/1755.html

Taskin, Z.C., Smith, J.C., Ahmed, S., Schaefer, A.: Cutting plane algorithms for solving a stochastic edge-

partition problem. Discret. Optim. 6(4), 420–435 (2009)

Vidyasagar, M.: Randomized algorithms for robust controller synthesis using statistical learning theory. In:

Learning Control and Hybrid Systems. Lecture Notes in Control and Information Sciences, vol. 241, pp.

3–24. Springer, Berlin (1999)

123

Author's personal copy

