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Abstract In this paper, we study the problem of joint placement and routing, both in

the deterministic and stochastic cases, arising in the field of compilation of dataflow

applications formanycore architectures.AGRASPalgorithm is first proposed for solv-

ing the deterministic version and extended afterwards to treat the chance-constrained

program with uncertainty affecting the weights of a dataflow process network. Exten-

sive computational results, on representative synthetic benchmark and real data, illus-

trate the practical relevance of the approach, as well as the robustness of the obtained

stochastic solutions.

Keywords Placement and routing · Chance-constrained programs · Manycore ·

Robust optimization
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1 Introduction

This article addresses the problem of application mapping, classified as “one of the

most urgent problems to be solved for implementing embedded systems” (Marwedel

et al. 2011; Marculescu et al. 2009). There are different mapping methodologies vary-

ing in function of application and architecture models, constraints and assumptions
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imposed by the system, information available about the platform, etc. However, the

routing aspect has almost always been neglected and the inherent uncertainty affecting

the problem data (such as the execution times of the tasks) has been ignored.

The purpose of this study is to propose a routable placementmethod on a clusterized

manycore architecture of applications expressed in 6C (Aubry et al. 2013; Goubier

et al. 2011), a particular type of Dataflow Process Networks (DPNs). As such, it pro-

vides an alternative approach to the sequential placement and routing steps of the

resource allocation compilation step of a 6C program, which targets specific appli-

cation domains (e.g. multimedia and networking) characterized by high bandwidth

demands.

Even if the two NP-hard sub-problems of tasks mapping and routing have already

been addressed in the literature, the novelty of our method consists in treating together

task mapping and routing, and thus, taking into account the routing when placing

the networks of processes, without any particular assumption on the infrastructure

(here a Network-On-Chip) topology, both for the deterministic and stochastic cases.

Therefore, the method we propose remains generic and can be applied to applications

expressed as DPN on any kind of architecture model.

It is also worth mentioning that the current approach is extensible to solve the map-

ping of applications expressed using othermodels of dataflownetworks inclusiveKahn

processes. In fact, as we will see further on, the placement and routing process we treat

here occurs in the compilation flow after the analysis of the properties of the dataflow

model. Consequently, the specific properties associated with a particular dataflow

model have been exploited before and served to generate the input data for our problem.

AGRASP heuristic has been conceived for solving the problem in the deterministic

case and afterwards adapted to solve the stochastic version, when the weights of the

tasks are supposed to be uncertain parameters.

The rest of this paper is organized as follows. The next section is useful in situating

the application context: compilation of DPNs for manycore systems. Section3 gives

a formal description of the problem while the following one describes similar exist-

ing approaches and provides a brief overview of the techniques for optimizing under

uncertainty. In Sects. 5 and 6, we present in details the structure of our GRASPmethod

for respectively deterministic and stochastic cases. Section7 provides the results of

computational experiments conducted on synthetic benchmarks aswell as on a real rel-

atively complex6C application. Some final remarks and future research perspectives

are presented in the last section.

2 Context and research motivations

Nowadays, the embedded systems industry is revolutionized by the emergence of

massively multi-core (manycore) architectures. Designed as a solution to reduce the

Moore’s gap,1 they are composed of at least a dozen of parallel processing elements

1 Despite the exponential growth of the number of transistors which can be placed on an integrated circuit

(according to Moore’s law), the performance of practical computing systems does not follow the same

growth rate.
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(cores), a mix of local and shared memory, distributed global memory or multilevel

cache hierarchy and an infrastructure for inter-cores communication such a Network-

On-Chip (NoC).

The Kalray’s MPPA-256 (Dupont de Dinechin et al. 2013), the platform used in

this paper for the real user case, is one of the first homogeneous embedded manycore,

released in 2013 and manufactured using 28nm CMOS technology. This single-chip

manycore processor is organized as 16(4×4) computing clusters connected through a

bidirectional NoC with a 2D torus topology. As the basic processing unit of the MPPA

chip, each computing cluster integrates as main components 16 processing engines

(PE) (also called cores), one resource management (RM) core, a shared memory and

a direct memory access (DMA) engine for transferring data.

Programming applications formanycore systems is a difficult task, since there are at

least three difficulties to overcome: handle limited and dependent resources (memory,

NoC), be able to run correctly large parallel programs and efficiently exploit the

underlying parallel architectures.

The dataflow paradigm seems to be a good candidate for programming manycore

applications as it satisfies most of the properties stated before. With the first models

emerging in the early 1970s, dataflow languages (Lee and Parks 1995) provide an

efficient and simple solution to express programs, which can be executed on a parallel

architecture, without worrying about data synchronization.

Traditional programming imperative languages (like C or Java) even with SMP

extensions are based on a sequential von Neumann architecture and therefore are of

lower productivity for writing effective parallel programs for manycore systems.

Moreover, theMessage Passing libraries such asMPI associatedwith the traditional

languages and used currently on distributed systems require explicitly managing com-

munications and synchronizations between tasks.

An example of a recent dataflow model and language is 6C [e.g. Goubier et al.

(2011)], a language andmodel which allows to perform a formal analysis for verifying

properties like absence of deadlock or memory bounded execution.

Using a dataflow model, an application is described as a static instantiation graph

of concurrent tasks (agents) interacting through unidirectional FIFO channels. Once

the application has been designed and implemented using a dataflow programming

language, it is the role of the compilation chain tomake the connectionwith the specific

execution model for the embedded manycore target.

Let us exemplify the compilation process through6C compilation chain, organized

into four passes:

– Lexical analysis, parsing and code generation. This first pass, the 6C front-end,

begins with a lexical, syntactic and semantic analysis of the code, common to

most compilers. Afterwards, preliminary C codes are generated from 6C sources

either for off-line execution (the instantiation codes of the agents), or for further

refinement.

– Compilation of the parallelism. The purpose of the second pass, the 6C middle-

end, is to instantiate and connect the agents, by executing at compile time the

corresponding codes generated by the first pass.
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Once the construction of the application graph is complete, parallelism reduction

techniques by pattern matching (Carpov et al. 2013) are applied and a safe com-

putation of a deadlock-free lowest bound for the buffers sizes of the links is also

performed.

– Resource allocation. The third pass is in charge of resource allocation (in the

larger sense). First, it supports a dimensioning of communication buffers taking

into account the execution times of the tasks and the application requirements in

terms of bandwidths (non functional constraints). Next, in order to realize a con-

nection with the execution model, it constructs a folded unbounded partial ordering

of task occurrences (and thus, finitely representable).

This pass is also responsible of placement and routing, with the objectives of group-

ing together (under capacity constraints for each cluster of the architecture) the tasks

which communicate the most, mapping these groups of tasks to the clusters and,

finally, computing routing paths for the data traversing the NoC.

– Runtime generation and link edition. The last pass, the6C back-end, is responsible

of generating the final C code and the runtime tables. Also, during this stage and

using C back-end compiler tools, link edition and loadbuild are realized.

The optimization problemwe consider here, related to the third pass of compilation,

consists in the joint placement and routing of Dataflow Process Networks (DPN) on a

homogeneous clusterized manycore architecture in which the cores are organized in

clusters communicating through an asynchronous Network-On-Chip.

Let us now formally describe the problem.

3 Problem statement

The static mapping of tasks from a DPN onto the network of clusters consists in a

tasks placement such as the total bandwidth used by the application is minimal and

for each pair of communicating tasks, there exits a feasible routing path between tasks

situated on different clusters.

The clusterized architecture is a directed graph G = (N , A, R, Ba) with N the

set of nodes (clusters) and A the set of arcs between nodes, corresponding to the

NoC links. Ba : A −→ R describes the bandwidths between different clusters of

the target architecture, with Ba((ni n j )) > 0 the maximal capacity for arc
(

ni , n j

)

and Ba((ni n j )) = 0 if nodes ni and n j are not connected. R is the set of resources

(essentiallymemory footprint and computing core occupancy)we have at our disposal.

The capacities of the nodes are given by a multi-dimensional array Cn ∈ R
+|R|.

As our initial target architecture is made of homogeneous clusters linked by a

homogeneous NoC, the remaining of this paper will be restrained to the case of homo-

geneous nodes and arcs for G. Hence we suppose all nodes have the same capacity

Cnr for each resource r ∈ R and all arcs have the same maximal bandwidth Ba .

Additionally, the extension of our method to heterogeneous architectures is not

difficult, one mainly having to modify the admissibility tests (i.e. take into account

different capacity constraints for each cluster and different maximal bandwidths for

each arc). As such, the generalization of our approach to non homogeneous case do

not change the problem structure or its size.
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LetDPN = (V, E, S, Q) be a directed graph representing the network of processes

with V the set of vertices (tasks) and E the set of communication channels.

S : V −→ R
+|R|, is a size function for the tasks, with str being the weight of task

t for resource r .

Since the core occupancies of the tasks are computed based on their execution

times, one of the main sources of uncertainty for combinatorial problems arising in

embedded field, we consider the stochastic case with variations on the weight of tasks,

as detailed in Sect. 6.2.

Q : E −→ R characterizes the communication where qti t j
> 0 denotes the weight

of arc
(

ti , t j

)

∈ E and qti t j
= 0 if no arc

(

ti , t j

)

exists between ti and t j .

Let g : V → N be a mapping of tasks to the nodes. As such, we are interested in

finding an admissible assignment g of tasks to nodesminimizing the sum of inter-tasks

communications:
∑

(t t ′)∈E :g(t) 6=g(t ′)

qt t ′ . (1)

Since the cost of tasks communications situated on same cluster is several order

of magnitude smaller than the cost of communications between tasks assigned on

different clusters (memory-based versus NoC-based communication), the former is

ignored in the overall objective function.

In the context of our present work, an admissible assignment is a mapping of tasks

to nodes which satisfies the capacity constraints:

∑

t∈V :g(t)=n

str ≤ Cnr ,∀n ∈ N ,∀r ∈ R, (2)

and, furthermore, it assures that there exists a feasible routing between every two

communicating tasks:

{∀(t, t ′) ∈ E and g(t) 6= g(t ′) and qt t ′ ≥ 0} : ∃route(t,t’) (3)

which respects the maximal capacity Ba of the links of the network.

As such, the last condition verifies if all the communications can be accommodated

across the network G without exceeding the maximal capacity of the arcs in terms of

bandwidth.

In order to simplify communication protocols, the search of possible routes will be

limited to a single unsplittable commodity flow using a shortest-path routing strategy.

The search of routes is limited to unsplittable flow for simplifying the communica-

tion protocols and also, for avoiding the problems of restoring the order of arrival of

data packets. If, instead,multi-flow is considered for the routing, a softwaremechanism

is necessary in order to handle the order of arrival and to rearrange the packets.

Since the tasks mapping is equivalent to the Node Capacitated Graph Partitioning

problem which is NP-hard (Garey et al. 1976) and unsplittable flow problem can be

restricted to theDirected EdgeDisjoint Paths problem, alsoNP-hard (Korte andVygen

2006), the joint problem is straightforwardly NP-hard in the strong sense.
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Fig. 1 Classifying mapping approaches [extended version of Singh et al. (2013)]

Regarding the size of instances specific to our context of application, ourmethod has

to be able to map networks of processes with a few hundreds of tasks on architectures

having at least a dozen of nodes. An example of a real application a compilation chain

has to treat, which will be used across this study for an experimental validation, is a

motion target dataflow which has to be placed on a NoC with a bi-dimensional 4× 4

torus topology.

Let us now present some existing work on mapping methodologies.

4 Related work

4.1 Mapping methodologies

As shown in Fig. 1, there are different criteria for classifying mapping technologies

in function of the target architecture, when the placement takes place (at run time or

design time) or the hierarchy involved.

For staticmappings, the optimization is performed at design timewhile for dynamic

workload scenario, the mapping takes place at run time. Moreover, for dynamic map-

pings, it is required a platformmanagement responsible of mapping the tasks, schedul-

ing, resource control, configuration control and task migration. Both design time and

run timemappings can target either homogeneous or heterogeneousmulticore systems

and can be optimized for different optimization metrics.

Since we are interested in static mapping, the following section presents some of

the methods belonging to this category for both deterministic and stochastic case. For

a detailed survey on mapping strategies, please refer to Singh et al. (2013).
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4.1.1 Static mapping approaches for the deterministic problem

Actually, even if most of the existing studies treating task mapping belong to this

category, they remain different in the architectures they target (homogeneous or het-

erogeneous), the optimization goal they fix and the restrictions they impose on the

system. Moreover, we have to remark that even if the task mapping was and remains a

relatively well studied problem [with the first works by Stone (1977) and Lo (1988)],

the routing aspect has been often neglected, the scheduling problem drawing more the

researchers attention.

For the mapping of applications expressed as dataflow process networks and for

which the target architecture is amulticore system,we can citeOrsila et al. (2009), Cas-

trillon et al. (2012), Bonfietti et al. (2010), Choi et al. (2012), Galea and Sirdey (2012).

In Orsila et al. (2009), a simulated annealing algorithm is proposed for distributing

Kahn Process Networks (the most general dataflow model) on Multiprocessors SoCs

(MpSoCS) with at most four Processing Elements (PE) connected with dual shared

bus. Galea and Sirdey (2012) proposes a parallel simulated annealing approach for the

DPNsmapping on a square torus architecture. Since this method is quite computation-

ally demanding (roughly 20min for a 31× 31 square grid of tasks using 6 computing

cores), it is more appropriate to be applied at the end of the development cycle of

embedded applications. Castrillon et al. (2012) presents an algorithm which, executed

repeatedly, allows process and communication mapping of applications expressed as

Kahn Process Networks onto a homogeneous MpSoC, with the objective of mini-

mizing the application makespan. In Bonfietti et al. (2010), the authors address both

mapping and scheduling of applications expressed as SDF (Synchronous DataFlow,

models in which a fixed amount of data is consumed and produced at each firing of a

task) on homogeneous multi-core platforms, using a Constraint Programming-based

algorithm to maximize the throughput. Another method for solving the mapping and

scheduling of a SDF application on a multi-core architecture, based on a genetic algo-

rithm (Choi et al. 2012), takes into account the limited size of scratchpad memory

(SPM) of the cores and tries to minimize the execution latency.

It is worth mentioning that the problem we address is different in constraints and

objectives from the similar optimization problems occurring in VLSI (Very-Large-

Scale-Integration) design flow for creating integrated circuits. In the latest case, the

placement consists in taking a list of electronic components (which compose the

circuit) and arranging them geometrically in a limited space while the routing is in

charge of the design of the wiring connecting the placed components.

Several approaches (Marcon et al. 2005; Srinivasan and Chatha 2005; Murali et al.

2006; Hu and Marculescu 2005) for multi/manycore platforms propose configuration

of the NoC according to the application in order to meet tasks requirements while

fitting a specific SoC architecture.

Instead, we consider that the manycore specification and in particular NoC charac-

teristics such maximal bandwidth for links are rigid. As such, the placement and the

routing of tasks are realized afterwards (without worrying about scheduling) during

the compilation process of a dataflow application.

The only similar approach, of which we are aware of, treating the same problem

under the same constraints as ours is Sirdey (2011) which solves the problem as a
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master(placement)/slave(routing) couple. As such, the overall problem is split into

two sub-problems, less complex. The assignment is solved using a semi-greedy algo-

rithm while the routing paths are computed optimally with a mixed linear integer

programming. However, the sequential resolution can disrupt the structure of the ini-

tial problem and the found placement may not be routable so there can be feasibility

issues for the routing problem downstream as a result of relaxing some constraints for

the upstream problem. The typical example consists of a placement we cannot route

because the flows between the nodes of the network exceed the maximal bandwidth

capacity for the links Ba .

Also, the GRASP algorithm for the deterministic placement and routing was first

introduced in Stan et al. (2013). For the current paper, we have enriched the post-

optimization with the addition of an option for 1-OPT search and we have also per-

formed extensive tests on a new and a larger benchmark, composed of random gen-

erated instances. Moreover, we considered here the stochastic aspect of the problem

when the uncertainty is on the weights of the tasks, which was, at our knowledge,

never been treated before.

4.1.2 Static mapping approaches for the stochastic problem

While there are quite numerous studies analyzing the stochastic behavior of task

execution times for soft real-time applications (e.g. for scheduling purpose), there are

almost no works on optimizing the design of an application and taking into account

the fact that task execution times are stochastic.

In Manolache et al. (2008), stochastic mapping and priority assignment of graph

tasks on amultiprocessor hardware architecture is performed via a tabu search heuristic

with the goal of optimizing the ratio of deadlines missed. The underneath assumption

is that for each task and each processor, a set of probability density functions for the

execution time is available.

Lombardi et al. (2010) address the stochastic problem of allocation and scheduling

of conditional tasks graphs (CTG) for multiprocessor platforms, by guaranteeing that

for each run time scenario encapsulated by the graph, the temporal and resource con-

straints are satisfied. As such, they are searching for an unique assignment of starting

time and resources to tasks, minimizing the expected value of the communication cost.

By analysing the task graph, they propose an exact analytical stochastic formulation

of the objective and solve the allocation using Integer Linear Programming and the

scheduling with Constraint Programming.

Shestak et al. (2006) studies the static robust resource allocation to application for

distributed systems that are periodic sensor-driven when the execution times of the

applications are independent random variables. While the objective function consists

of minimizing the period between sequential data sets produced by the sensors, the

probabilistic constraint is on the performance characteristic of the system. In order to

compute this probability and to make sure it is superior to a minimal QoS (Quality of

Service), bootstrap or FFT (Fast Fourier Transform) methods are used. The obtained

approximation of the cumulative density function is further employed by the four

greedy heuristics the authors design.
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Therefore, we can affirm that, to the best of our knowledge, the stochastic problem

of joint placement and routing of dataflow applications for manycore has not been yet

addressed in the literature. Let us now get back for a moment to the GRASP algorithm

we conceived for the deterministic problem. Afterwards, we will present its adaptation

to the stochastic case, for which we used the robust binomial approach, a optimization

method we developed, first described in Stan et al. (2012).

5 GRASP for the deterministic joint mapping and routing

5.1 Preliminaries

We recall that our work is concerning the static placement and routing of applications

for embedded manycore in the context of an iterative compilation. The objective is to

place the tasks of an application to the nodes of the network and in the same time,

monoroute the flows on the Network-On-Chip. In order to design a resolution method

for the joint mapping and routing, an important aspect to decide is for which step of the

development cycle of embedded applications this algorithm is intended. The beginning

of the development of an embedded application requires a short programmer/target

feedback loop when the programmer is able to obtain a first working version of the

application with a well coarse-grained structure. Thus, the beginning of the cycle

requires fast heuristics and can accept solutions of moderate quality. At the end of

the development cycle, since more human and computing times are invested (e.g.

acceptable compilation times of up to one night), more fine-grained optimizations

are afforded. Hence, at this point of the cycle, one can accept more computationally

intensive algorithms and more powerful computer systems.

Other algorithmic aspects to be considered are the problem complexity and the size

of the real instances to deal with, both factors making the building of a tractable exact

resolution for both mapping and routing difficult and inefficient.

As such, we turned our attention to approximate algorithms and in particular to

the GRASP metaheuristic, which seems a well suited choice to tackle this problem

especially for the beginning of the development cycle of an application.

Introduced in the nineties by Feo and Resende (1995), GRASP (Greedy Random-

izedAdaptive Search Procedure) is amulti-startmetaheuristic, each iteration involving

two phases: construction and local search. The construction phase builds a feasible

solution using a greedy randomized algorithm. During the local phase, the neighbour-

hood of the current solution is investigated in the search of better solutions. At the

end, the best overall solution is kept as the result.

From a software engineering point of view, a GRASP is made of simple algorithmic

componentswhich often already exists andwhich then can be leveraged almost directly

in this metaheuristic framework (and, as shown in this paper, further generalized to

cope with uncertainty). For our problem, we inspired our construction phase from the

already existing greedy algorithm (Sirdey 2011), which was used for the partitioning

of dataflow networks in the deterministic case. Also, due to its speed of execution, we

considered it more adapted to be applied at the beginning of the compilation cycle,

especially if we want to consider the stochastic aspect of the parameters, known to
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increase the complexity of a problem. For the end of the compilation cycle, when the

computing times are not a concern, other approximation methods [like, for example,

the simulated annealing fromGalea and Sirdey (2012)] could be extended to guarantee

the routing in the deterministic case and afterwards, adapted for the stochastic case.

Algorithm1 illustrates the main blocks of our GRASP method for finding routable

mappings of tasks to clusters. The input parameters are the set of tasks V , the set of

nodes N , the set of resources R, the maximum number of iterations to be performed

and also the parameter k used for controlling the amount of randomness (this is the

probabilistic aspect of the construction phase). The mapping gc found by the construc-

tion phase is further exploited in the local search phase and optimized. If the resulting

mapping g of this post-optimization is better than the previous best mapping gb then

we update gb.

Algorithm 1: GRASP for joint placement and routing

Input: V , N , R, k, MaxIterations

1: gb ← null

2: for i = 1 to MaxIterations do

3: gc ← construction_phase(V , N , R, k)

4: g ← local_search_phase(gc)

5: update best assignment gb with g if needed

6: end for

Output: best assignment gb

Before explaining in more details each one of the two stages of our approach, let

us recall the notion of affinity, initially introduced in Stan et al. (2012).

Let S and T be two disjoint subsets of V and δ(S, T ) = {(v,w) : v ∈ S;w ∈ T }.

Definition 1 The relative affinity of S for T is defined as

γ (S, T ) =
1

2
α(S, T )

(

1

α(S, V \S)
+

1

α(T, V \T )

)

where α(S, T ) is the total affinity equal to
∑

(v,w)∈δ(S,T ) qvw.

5.2 Construction phase

The greedy constructive method from the first step of our GRASP is inspired from an

existing algorithm, initially used for partitioning networks of processes and which was

based on the notion of relative affinity (Stan et al. 2012). We modified it in order to

deal with routing and we changed the randomization strategy to intensify the diversity

of the solutions.

The main idea of our constructive algorithm is to verify at each step of the mapping,

that the flows between the assigned tasks can be routed by making use of the previous

computed flows and trying to find feasible paths for the new or modified flows. At

each step of the mapping, the computation of new routing paths is realized through a
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single source shortest-path algorithm on a reduced graphG ′ obtained from the original

network G and whose arcs are weighted with a residual capacity Cra .

Let G ′ = (N , A′) be the reduced graph with the same number of vertices N as G

and A′ the set of arcs in G weighted with a positive residual capacity.

Let F be the set of flows between tasks and for each flow f ∈ F , s( f ), d( f ) and

w( f ) are respectively the source, the sink (or the destination) and the demand (the

weight) for flow f .

Let sp( f ) be the shortest path in G ′ by which the flow f is accommodated. So

sp( f ) is composed of a set of nodes {n1, n2, . . . , nm} ∈ |N | × |N | × · · · |N | with

m ∈ {0, |N | − 1}, n1 = g(s( f )) and nm = g(d( f )), such that ∀i = {1, . . . , m − 1},

Cr(ni ,ni+1)
≥ w( f ) and the length of this path is minimal.

Initially, A′ = A and ∀a ∈ A′, Cra = Ba and afterwards, it is updated as follows:

Cra = Cra −
∑

f ∈F

w( f ) ∗ χa

with χa =

{

1 if a ∈ sp( f )

0 otherwise.

Let us now define the notions of admissible assignment and admissible fusion,

which for the current approach, verify the respect of capacity resources for the clusters

and also the existence of a routing.

Let W be the set of vertices not yet assigned to a node.

Definition 2 An assignment of task t to node n is admissible if it satisfies the capacity

constraints for node n:

str +
∑

t ′∈V \W :g(t ′)=n

st ′r ≤ Cr , ∀r ∈ R

and there is a feasible routable path for every flow f between t and all the other tasks

t ′ ∈ V \W with g(t) 6= g(t ′) and (t t ′) ∈ E :

{

∃sp( f ) ∈ G ′ : s( f ) = t ∧ d( f ) = t ′ ∧ w( f ) = qt t ′ > 0
}

{

∃sp( f ) ∈ G ′ : s( f ) = t ′ ∧ d( f ) = t ∧ w( f ) = qt ′t > 0
}

Definition 3 A fusion between the nodes n and m is admissible if:

∑

t∈V \W :g(t)=n

str +
∑

t∈V \W :g(t)=m

str ≤ Cr , ∀r ∈ R

and all the flows for tasks belonging to n and m are reroutable through G ′.

If ci is a merge of two nodes (n∗1 ∈ N , n∗2 ∈ N ), the necessary modifications are

made such that all vertices from node n∗1 are transferred to node n∗2, the flows of the

tasks already assigned are updated for taking into account the fusion and the residual

capacities of the arcs of G ′ are also recomputed.

123

Author's personal copy



O. Stan et al.

The overall framework of the greedy randomized construction algorithm is pre-

sented in Algorithm2. Initially, a partial solution is set as the first min(|V |, |N |) tasks

in lexicographic order on the decreasing tasks weights assigned to the N nodes with

the condition that this initial mapping is also routable.

As such, by placing the heaviest tasks first (one on every node), we assure a first

admissible routable assignment whose eventually poor quality could be later improved

by a fusion between two nodes. This initial assignment is intended to cope with the

bin-packing side of the problem in the case when a few large tasks are present.

Then, the list [rcl] of the k best decisions is constructed in a greedy fashion, by

choosing between an admissible assignment or an admissible fusion, the ones with

the highest affinity.

Once adecision ci is chosen at randomfrom [rcl],we evaluate its nature (assignment

or fusion) and make the corresponding changes for Cra and F .

Algorithm 2: GRASP for joint placement and routing: construction_phase

Input: V , N , R, k

1: Initialization of the set of unassigned tasks W = V

2: Assign the first min(|V |, |N |) vertices to the |N | nodes and update sets W , F

3: Build the list of k restricted candidate decisions [rcl] made of admissible assignments (cf. Def.2)

and admissible fusions (cf. Def.3)

4: Select at random ci from [rcl]

5: If ci is an assignment (v
∗ ∈ W, n∗ ∈ N ), then update set W .

Else, ci is a fusion (n∗1 ∈ N , n∗2 ∈ N ), and thus merge nodes n∗1 and n∗2 .

6: Update the reduced graph G′ and set of flows F

7: If W = ∅ or there is neither any admissible assignment nor any admissible fusion, stop.

Else, go to Step 3.

Output: Assignment gc(V )

If ci is an assignment of task ti to node n, the set W is updated: W = W\{ti }, the

incoming/outgoing flows between the task ti and the other tasks already assigned are

computed and added to the set F and the residual capacities of the arcs of the network

are reduced accordingly.

After each assignment or fusion, G ′ and F are updated accordingly, by modifying

Cra and by adding and/or removing flows.

To take advantage of the randomization applied in step 4, the overall GRASP is

executed several times (a maximal number of iterations) and the best solution is kept

at the end. If, not even after this multi-execution, an admissible assignment is not

found, i.e. W is empty, the application can not be automatically mapped on the target

architecture and a compilation error occurs.

5.3 Local search phase

Afterwards, the quality of the constructed solution S for gc, the assignment obtained

previously, is improved through a local search procedure. The neighbourhood struc-

tures are classical: either 1-OPT by transferring single tasks already placed to others
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nodes or 2-OPT, consisting in generating a new solution from S by interchanging

pairs of tasks assigned to different nodes. The use of this type of neighbourhoods is

appropriate under the assumption of a relative homogeneity for the tasks weights.

Also, when setting the parameters of the local optimization we can choose between

a first (in which the current solution is replaced by the first better local solution) or best

improving search strategy. In practice, it has been observed that for many applications,

quite often, both search strategies lead to the same final solution, but with smaller

computation times when a first improving strategy is used (Feo and Resende 1995).

The subtlety of our approach consists in selecting the tasks to move and exchange

from the set:

E X t = {t ∈ V : (∃n 6= g(t) ∈ N : α(t, n)− α(t, g(t)) > 0)}

with α(t, n), the affinity of task t for node n (see Sect. 5.1).

Once the set E X t is constructed, only admissible transfers or admissible exchanges

are analysed. The routability aspect is verified using the same principles as described

previously and each time a local optimization occurs and the placement is modified,

the reduced graph and the set of flows F are also updated.

Definition 4 For a given assignment g, a transfer of task t to a node n is admissible

if:

– the capacity of node n remains satisfied for each resource
∑

t1:g(t1)=n st1r + str ≤

Cnr , ∀r ∈ R

– the flows f ∈ F between t and other tasks t ′ for which g(t ′) 6= n and w( f ) > 0

are reroutable.

The solution S′ of the new placement whenmoving t to node n can be easily computed

using S: S′ = S +
∑

g(t ′)=g(t)(qt t ′ + qt ′t )−
∑

g(t ′)=n(qt t ′ + qt ′t ).

Definition 5 For a given assignment g, an exchange of two tasks t and t ′ from node

g(t) to node g(t ′) and vice versa is admissible only if:

– the capacity constraints for the associated nodes are satisfied

∑

t1:t1 6=t;g(t1)=g(t)

st1r − str + st ′r ≤ Cg(t)r , ∀r ∈ R

∑

t1:t1 6=t ′;g(t1)=g(t ′)

st1r − st ′r + str ≤ Cg(t ′)r , ∀r ∈ R

– the flows in F having as source or sink t and/or t ′ are still routable.

Since, except for the exchanged tasks, all the others remain on the same nodes,

the new value of the solution when moving t to g(t ′) and t ′ to g(t) will be: S′ =

S +
∑

g(t)=g(ti )
(qt ti + qti t − qt ′ti − qti t ′)+

∑

g(t ′)=g(ti )
(qt ′ti + qti t ′ − qt ti − qti t ).
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6 Extended GRASP for the stochastic joint mapping and routing

As already mentioned, one of the main sources of uncertainty for optimization prob-

lems related to compilation of dataflow applications for manycore lies in the intrinsic

indeterminism of execution times for computing kernels of intermediate granular-

ity. This indeterminism is due in part to some of the characteristics of the processor

architecture such as the cache memories and memory access controllers and is also

inherently due to data dependent control flows (conditional branches and loops).

Even if it is reasonable to assume, that the probability distributions of execution

times have a bounded support (no infinite loops), we have to cope with the fact that

the distributions are intrinsically multimodal, multidimensional and difficult to fully

characterize. An easy example, showing the dependency issue for these random vari-

ables, consists in a target tracking pipeline for which the execution times of each of

the pipeline elementary tasks depend, to a certain degree, on the number of effec-

tively treated targets. However, in the context of an iterative compilation, we dispose

of observations of these execution times, when performing tests on the target archi-

tecture and of which we could eventually take advantage for the joint mapping and

routing problem.

The execution times taking part in the computation of computing core occupancy of

the tasks, we consider the stochastic case in which the weights of tasks str are random

variables. Therefore, we obtain the associated chance-constrained problem, in which

constraints (2) are being replaced by the probability constraints for the capacities of

the clusters:

P





∑

t∈V :g(t)=n

str ≤ Cnr , ∀n ∈ N ; ∀r ∈ R



 ≥ 1− ε.

with ε ∈ (0, 1).

In order to solve the chance-constrained version of the mapping and routing prob-

lem, while respecting the characteristics of the uncertain variables, we applied the

robust binomial approach, introduced in Stan et al. (2012) and briefly described in the

next section.

6.1 Preliminaries: the robust binomial approach

The type of stochastic problem we deal with here is a chance-constrained program

(Prékopa 1995), with the following general form:

min
x

g (x) (CCP)

s.t. P (G(x, ξ) ≤ 0) ≥ 1− ε

where x ∈ R
n is the decision variable vector, ξ ∈ � −→ R

D represents a random

vector and g : Rn −→ R is the objective function.
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We suppose that there exists a probability space (�,6, P), with �, the sample

space, 6, the set of events, i.e. subsets of �, and P, the probability distribution on 6

where P(e) of an event e is the probability measure on the set 6.

Also, in the following, we denote by z̃ the realization of a random variable z.

Most of the existing studies for solving chance-constrained programs are making

assumptions (e.g., existing analytical form of the distribution, independence of the

random vector components) which are either restrictive, or difficult to verify or not

always adequate to represent the uncertainty of real-life applications (as is the case

for the execution times).

An extension of the scenario method (Calafiore and Campi 2006), justified by

the theory of statistical hypothesis testing, the robust binomial approach, takes into

account the role of experimental data, without any assumption on the joint distribution

of the random vector ξ (in particular on the interdependence of the components of ξ ).

The only major assumption made is the existence of a representative sample for ξ ,

of sufficiently large size, composed of independent and identically distributed (i.i.d.)

observations: ξ (1), . . . , ξ (NS).

Given x the decision vector, the random variable χ corresponding to the number

of times the inequality G (x, ξ) ≤ 0 is satisfied by the sample follows a Binomial

distribution with parameters NS and p0 (χ ∼ B(NS, p0)). We can choose a threshold

k(NS, 1− ε, α) (for simplicity sake, we will refer to it as k) so that the probability we

accept the constraint by error is smaller than a fixed α, in which case p0 is smaller

than 1 − ε. The parameter α, to which we refer as the confidence parameter, can be

interpreted as the type I error of a statistical hypothesis test.

We can obtain thus an approximation to the initial chance-constrained program, in

which the number of realizations χ̃ respecting the capacity constraints is compared

with the parameter k, fixed in advance in function of the values of NS, ε and α. If a

feasible solution is found for this program, then we can affirm that we found a solution

which is also feasible for the initial stochastic program with a minimal probability of

1− ε and a level of confidence of 1− α.

Due to the induced complexity (depending on the size of the sample), the robust

binomial approach is better suited for approximation algorithms. For an existing

(meta)heuristic conceived for solving a given deterministic problem , it is relatively

easy to adapt it using the robust binomial approach for solving the stochastic version

of the same problem. In the case of a constructive algorithm, there is the need to

modify the way feasibility of solutions is decided, by changing the oracle deciding

the admissibility of a solution. As for the heuristics based on neighbourhoods, the

robust binomial approach must be integrated when establishing the list of potential

neighbours.

Let’s go back now to our problem of joint mapping and routing and the necessary

changes in our GRASP algorithm, when applying the robust binomial approach.

6.2 Changes in the initial algorithm

We assume that, for the weights of each task t ∈ V , for each resource r ∈ R, we have

at our disposal a sample of sufficient size NS of i.i.d. realizations s̃
(1)
r t , . . . , s̃

(NS)
r t .
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As such, we can use the robust binomial approach and obtain robust solutions,

guaranteed with a probability level of 1 − ε and a confidence level of 1 − α, with

α ∈ (0, 1).

For the GRASP conceived for the joint deterministic placement and routing, the

oracle of the greedy constructive step which decides if a decision (either assignment

or fusion) is feasible is based on the notions of admissible assignment and admissible

fusion. Therefore, we have to modify these two notions in order to take into account

the stochastic nature of the tasks weights.

Definition 6 An assignment of task t to node n is stochastically admissible if:

– the sum

NS
∑

i=1

χ̃











∀n′ 6= n,∀r :
∑

t ′:g(t ′)=n′

s̃
(i)

t ′r
< Cr







∧







∀r : s̃
(i)
tr +

∑

t ′:g(t ′)=n

s̃
(i)

t ′r
<Cr











is superior or equal to k(NS, 1−ε, α), where χ̃ (Pa) = 1 if and only if the predicate

Pa is true.

– there is a feasible routable path for every flow f between t and all the other tasks

t ′ ∈ V \W with g(t) 6= g(t ′) and (t t ′) ∈ E :

{

∃sp( f ) ∈ G ′ : s( f ) = t ∧ d( f ) = t ′ ∧ w( f ) = qt t ′ > 0
}

{

∃sp( f ) ∈ G ′ : s( f ) = t ′ ∧ d( f ) = t ∧ w( f ) = qt ′t > 0
}

Definition 7 A fusion between the nodes n and m is stochastically admissible if:

– the sum

NS
∑

i=1

χ̃





























∀n′, r :
∑

t :g(t)=n′

n′ 6=n, n′ 6=m

s̃
(i)
tr <Cr



















∧







∀r :
∑

t :g(t)=n

s̃
(i)
tr +

∑

t ′:g(t ′)=m

s̃
(i)

t ′r
<Cr

















is superior or equal to k(NS, 1−ε, α), where χ̃ (P f ) = 1 if and only if the predicate

P f is true.

– all the flows for tasks belonging to n and m are reroutable through G ′.

Therefore, the only major modifications in Algorithm2 are during the steps 2 and

3 in which the admissibility criterion is used.

As for the post-optimization step, we used a simple neighbourhood in which a new

solution is built from the previous by exchanges of pairs of tasks or transfers of a

single task to another cluster. This local search is based on the notions of admissible

transfer or admissible exchange which are defined with regards to the weights of the

tasks and the capacity of each node. Thus, we have to modify these two notions in

order to apply the robust binomial approach.
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Definition 8 For a given assignment g, a transfer of task t , already assigned to node

ni = g(t), to another node n is stochastically admissible if:

– the flows f ∈ F between t and other tasks t ′ for which g(t ′) 6= n and w( f ) > 0

are reroutable.

– the sum
∑NS

i=1 χ̃ (Pa) ≥ k(NS, 1− ε, α) with

Pa :













∀n′ 6= n 6= ni ,∀r :
∑

t ′:g(t ′)=n′

s̃
(i)

t ′r
< Cr







∧







∀r :
∑

t ′:g(t ′)=n

s̃
(i)

t ′r
+ s̃

(i)
tr < Cr







∧







∀r :
∑

t ′:t ′ 6=t;g(t ′)=ni

s̃
(i)

t ′r
− s̃

(i)
tr < Cr













where χ̃ (Pa) = 1 if and only if predicate Pa is true.

Definition 9 For a given assignment g, an exchange of two tasks t and t ′ from node

g(t) to node g(t ′) and vice versa is stochastically admissible if:

– the flows in F having as source or sink t and/or t ′ are still routable.

– the sum
∑NS

i=1 χ̃ (Pa) ≥ k(NS, 1− ε, α) with

Pa :













∀n′ 6= g(t) 6= g(t ′),∀r :
∑

t1:g(t1)=n′

s̃
(i)
t1r

< Cr







∧







∀r :
∑

t1:t1 6=t;g(t1)=g(t)

s̃
(i)
t1r
+ s̃

(i)

t ′r
− s̃

(i)
tr < Cr







∧







∀r :
∑

t1:t1 6=t ′;g(t1)=g(t ′)

s̃
(i)
t1r
+ s̃

(i)
tr − s̃

(i)

t ′r
< Cr













where χ̃ (Pa) = 1 if and only if predicate Pa is true.

Besides these changes when defining the admissible neighbourhoods, the second pass

of the GRASP remains the same as for the deterministic problem.

Let us now provide some experimental results obtained by applying the GRASP

method for deterministic and respectively stochastic case.
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Table 1 Grid instances
Inst. #Vertices #Nodes Cn Solutions

(Sirdey 2011)

Grid 4×4 16 4 4 8

Grid 10×10 100 16 7 70

Grid 12×12 144 4 40 31

Grid 18×18 324 9 40 88

7 Computational experiments

7.1 Benchmark generation

7.1.1 Deterministic instances

In order to test our GRASP algorithm, we used several sets of test problems: grids

to be placed on square grids, random data generated with TGFF2 and a real image

processing application to be compiled using the compilation chain and placed on a

manycore architecture.

The first set of instances consists of undirected DPNs grids, representative in size

of our application context, with unitary weights for tasks and for communication

channels. Besides, these instances are easy to modify and we can use them to test dif-

ferent configurations. Table1 shows grids instances details, with column “#Vertices”

the number of vertices to be placed and column “#Nodes” the number of clusters

for a homogeneous torus architecture on which the vertices have to be placed. The

results are given for a maximal bandwidth for the links of the different NoCs set

to Ba = 1,000. The end column “Solutions” reports the solutions obtained by the

semi-greedy algorithm for tasks mapping described in Sirdey (2011).

The real application we test here is a motion target application, which performs

video processing and tracking of a sequence of related input video frames. Modifying

the number of strips in which the images of the video sequence are divided induces a

modification of the number of tasks to be placed. There are three kinds of resources

for the node capacity: cardinality, computing core occupancy and memory footprint.

The application has to be placed on a bi-dimensional torus 4× 4.

The random tasks graphs instances generated with TGFF are 1,920 graphs with

the number of vertices |V | varying in {50, 100, 200} to be placed on a cluster-

ized bi-dimensional architecture with N = 4 or N = 16 nodes. For each set of

graphs composed of 50, 100 and respectively 200 vertices, four seeds are used for

generating different communications and occupancy ratios. The number of incom-

ing and respectively outgoing arcs a task can have is limited to two. We consid-

ered the mono-resource case in which the capacity constraints are on the occupa-

tion ratios of each node. The capacities of nodes n ∈ N of the architecture are

equal and are computed as: Cn = x ∗
∑V

i=1 si/N with si the weight of task i and

2 Tasks Graph for Free: http://ziyang.eecs.umich.edu/~dickrp/tgff/.
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x ∈ {1.01, 1.25, 1.5, 1.75, 2}. As for the maximal bandwidth Ba on the arcs of the tar-

get architecture, we create and sort the list of communications weights of the channels

between tasks l = {qti t j
> 0 : ti , t j ∈ V } and then choose Ba asmax(qti t j

)+
∑y

i=1 l[i]

with y ∈ {5, 6, 7, 8}. Therefore, the most restricted instances are those with limited

capacity on the nodes when x = 1.01 and with limited maximal bandwidth for the

arcs of the network when y = 5.

7.1.2 Stochastic instances

The tests for the chance-constrained version of the placement and routing were per-

formed on the above instances, transformed to stochastic benchmarks with random

weights for the tasks.

For the grids instances, we generated the random variables representing the weights

of the vertices by simulating a joint bimodal distribution with each mode uniform in

its intervals and selected in an equally likely manner. The first mode is represented by

the hypercube: [0.8, 0.9]|V |, and the second one, by the hypercube: [1.1, 1.2]|V |.

As for the TGFF instances, we considered small variations on the weight wt of

each task t , following a bimodal uniform distribution : [wt − 3% wt , wt − 1% wt ] ×

[wt + 1%wt , wt + 3%wt ].

For the target motion detector, we considered the case when this 6C application

is composed of 57 tasks and has to be mapped on a Kalray architecture (Dupont de

Dinechin et al. 2013), with a frequency of the chip of 400MHz. We use a simulation

with ISS (Instruction Set Simulator) to obtain the processor cycles for each execution

of an agent and thus, deducing the execution times (knowing that a cycle corresponds

to 2.5ns). Instead of computing the core occupancy for each agent based on themean of

these executions (as it is made in the deterministic case), we take a sample of minimum

30 occupation rates of each occurrence for an agent and apply the GRASP for the

stochastic case to place the application. Each task is repeated one time per execution

cycle and the application is dimensioned to get 30 frames per second in output. As

such, the occupancy ratio of each occurrence of an agent, having a processor cycle p

is calculated as % ratio =
computed rate
max rate

= 2.5 ∗ 30 ∗ p(s) ∗ 10
2.

The experiments on grid instances and the image processing application have been

carried out on a Linux workstation, with a 2.40GHz I5 processor, 8GB of memory

and Ubuntu 12.04 as operating system. The benchmark composed of TGFF graphs

has been tested on a Linux workstation, with 48 processors, 64GB of memory and

Ubuntu 12.04 as operating system.

7.2 Results for the deterministic version

Our GRASP algorithm was tested for different configurations, with k ∈ {2, 3, 4} (see

Algorithm2, line 3), best improvement and first improvement, 1-OPT versus 2-OPT

for local search phase, etc.

We have decided to stop our algorithm when a number of maximal iterations or

when a time limit of 10min are reached.
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Table 2 Results of GRASP method for grid problems

Name k = 2 k = 3 k = 4

GR PS-1 PS-2 GR PS-1 PS-2 GR PS-1 PS-2

Grid4 ×4.inst 11 11 10 12 10 11 13 12 10

Grid10 ×10.inst 73 69 69 75 70 69 76 69 69

Grid12 ×12.inst 34 31 30 34 31 30 36 31 33

Grid18 ×18.inst 92 86 88 91 91 91 99 98 91

Since we prioritize the minimization of the bandwidths (cf. Eq.1) we guarantee just

that this mapping is routable. As such, we are not guaranteeing an optimal routing

and instead, we are analysing the difference, for an obtained placement, between the

routing our algorithm is using and an ideal one, (using a shortest-path strategy), by

measuring the average for all flows f ∈ F of fraction: lb =
length(sp( f ))

lengthr with lengthr

being the shortest path in the NoC between s( f ) and d( f ).

Table2 shows some of the placement results obtained for grids instances when the

number of iterations is equal to max(100, |V |log|V |), the notion of relative affinity is

used, the maximal bandwidth Ba = 1,000 and the number of selections k ∈ {2, 3, 4}.

The column “GR” represents the results of the construction part while columns “PS-

1” and “PS-2” are the complete results with post-optimization, when 1-OPT and

respectively 2-OPT neighbourhoods are used. As shown, the local search is useful and

better results are obtained for k = 2 and k = 3. Overall the quality of solutions is

comparable with the one found by the algorithm fromSirdey (2011). GRASP solutions

have an average deviation from the solutions found by the semi-greedy method in

Sirdey (2011) of≈5% for k = 2 (with 2-OPT) and less than 10% for k = 3 and k = 4

(both 1-OPT and 2-OPT), with the advantage that we also ensure the routability. In

average, the results found using 2-OPT are better than those with 1-OPT. When the

capacity of arcs Ba is large enough, our method is able to accommodate the flows via

the shortest paths and lb = 1 in all cases. Instead, when limiting more the capacity of

the links, the average of lb tends to increase to 1.05.

For the target motion application, Table3 shows the results obtained for a num-

ber of processes varying between 60 and 300 (column “|V |”) in function of the

number of strips (column “ST”). These results, obtained with the GRASP approach

for k ∈ {2, 3, 4}, using the notion of total affinity and a number of iterations equal

to max(100, |V |log|V |), are compared with those obtained by the method currently

implemented in the compilation chain (column “Sirdey 2011”) for the placement of the

application on a 2D torus 4×4 with Ba = 10,000,000. The GRASP method provides

better results in almost all cases. It should however be noted that when relative affinity

is used instead, the results of the GRASP are of lower quality. Since the capacity of

the network is large enough with regard to the flows to be routed, the bound lb is equal

to 1 for all instances, meaning that the routes found are following shortest paths.

The same instances were used to place the target motion application on the same

homogeneousNoCbut this timewith amaximal bandwidth for each arc Ba = 100,000.

While none of the placements found by the method from Sirdey (2011) is routable
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Table 3 Results for target motion application compared with greedy method from Sirdey (2011)

Name ST |V | GRASP Sirdey (2011)

k = 2 k = 3 k = 4

MD1.in 8 67 538,206 538,206 538,206 538,206

MD2.in 10 81 492,530 492,530 492,530 492,536

MD3.in 15 116 492,934 492,934 492,934 492,944

MD4.in 20 151 511,701 511,701 541,620 496,353

MD5.in 30 221 525,268 525,269 515,030 535,525

MD6.in 40 291 542,059 541,661 526,507 587,142

afterwards, the current method is finding placements which are also routable, with an

average of 1.17 for lb.

Extensive tests were also performed on the random TGFF graphs. One of the first

test was to compare the quality of the solutions for a different number of maximal

iterations, when k = 2, relative affinity is used and local search is based on exchanges

of tasks. As expected, the higher the number of iterations is, the higher is the increase

in the quality of solutions, with ≈50% of cases in which the solutions are better for

max(100, |V |log|V |) iterations.

We then compared the quality of the placements for a number of selections equal

to 2 and post optimization based on 2-OPT, when the notions of total and relative

affinity are used. It seems that the relative affinity is a better criterion to choose for the

construction part, with 1,113 instances with solutions of higher quality against 268

when using the absolute affinity.

Another test consisted in testing the GRASP (with k = 2, the number of iterations

max(100, |V |log|V |) and a 2-OPT strategy) against the sequential algorithm from

Sirdey (2011). The last one solves first the placement with a greedy method and

afterwards the routing with a MILP. The GRASP is able to find more solutions (for a

total of 1,920 instances), with 1,358 instances against 927 for the algorithm in Sirdey

(2011).

The main reason of the relatively large number of instances for which our method

does not find a solution is that we randomly generated instances which are very con-

strained (both in cluster capacity and in maximal bandwidth for each arc).

For 25.5% of the total number of graphs, our algorithm finds a routable place-

ment while the other does not find a placement or finds a placement which is not

routable.

When both algorithms find a solution, the value of the placement of the GRASP

is better or within 5% of the value found by the other method for 28.7% of cases.

For the routing, in 38.3% of solved cases, the values are within 7% from the optimal

routing found by the MILP from the sequential algorithm. As for the value of the lb

parameter, also an indicator of the quality of the routing, for 890 out of the 1,358

instances for which our GRASP is able to find a solution, this is equal to one, meaning

that the routing is following a shortest path. For the remaining 468 solved instances,

it seems that the routing is more difficult with lb value equal in average to 1.15.
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Table 4 Computation results

for NS = 100: grid problems
Instance α ε = 0.05 ε = 0.1

Sol. Cn Time Sol. Cn Time

Grid4×4 0.01 10 1.25 ≈0 12 1.25 ≈0

0.05 10 1.25 ≈0 12 1.25 ≈0

Grid10×10 0.01 74 1.15 0.92 76 1.15 0.56

0.05 72 1.15 0.52 69 1.15 0.48

Grid12×12 0.01 30 1 77 28 1 77.68

0.05 32 1 58.5 28 1 67

Grid18×18 0.01 92 1 600 89 1 600

0.05 94 1 600 94 1 600

Table 5 Computation results

for NS = 1,000: grid problems
Instance α ε = 0.05 ε = 0.1

Sol. Cn Time Sol. Cn Time

Grid4×4 0.01 10 1.25 ≈0 12 1.25 ≈0

0.05 10 1.25 ≈0 8 1.25 ≈0

Grid10×10 0.01 75 1.15 0.69 78 1.15 0.79

0.05 76 1.15 0.72 79 1.15 0.95

Grid12×12 0.01 29 1 230 31 1 210.6

0.05 30 1 235.3 29 1 263

Grid18×18 0.01 95 1 600 94 1 600

0.05 91 1 600 93 1 600

7.3 Results for the stochastic version

The tests for the stochastic version of the placement and routing are performed with

the following configuration for the GRASP: the number of selections k = 2, relative

affinity as criterion of choice in the constructive part, local search based on 2-OPT

and the maximal number of iterations fixed to max(100, |V |log|V |). We decided to

stop the algorithm as before, when the maximal number of iterations or a time limit

of 10min are reached.

The experiments consist in evaluating aspects such as the quality of the placements,

the time required and “the price of robustness”. First we keep the same capacity for

all nodes as in the deterministic case and afterwards, if needed, increase the capacity

of all nodes with a factor of {1.15, 1.25, 1.5, 1.75} until a feasible solution for the

chance-constrained case is found.

The stochastic version of the GRASP was tested on the grids problems by varying

the parameters ε ∈ {0.05, 0.1} and α in {0.01, 0.05} for a sample size of 100 and

respectively 1,000. Tables4 and 5 report the solutions obtained with column “sol.” for

the solution value, column “time” for the execution time and Cn the increase factor

required for the capacity of each node in order to find a feasible solution.
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Table 6 Computation time for

NS = 100, ε = 0.05, α = 0.05:

TGFF problems

|V |

50 100 200

# Instances 640 640 640

Time (s) 16.91 140.69 486.68

Table 7 Repartition of

solutions for NS = 100,

ε = 0.05, α = 0.05 in function

of Cn : TGFF problems

Multiplication factor for Cn

1 1.15 1.25 1.5 1.75 NA

% Instances 68.33 13.91 1.46 1.09 2.81 12.4

As it can be seen, the quality of the solutions is consistent with those found by the

deterministic algorithm. Also, we can remark that the effort to achieve robustness for

the solutions is not so high. For instance, for “Grid 4×4” (respectively “Grid10×10”)

it is necessary an increase of 1.25 (respectively 1.15) in the capacity of the node in order

to find a solution. For the other instances, the stochasticGRASP is able to find solutions

by keeping the same Cn . As expected, the execution time of the method depends on

the number of vertices and on the size of the sample, with a superior overall execution

timewhen using a sample size of 1,000 instead of a sample of 100 realizations. Like for

the deterministic case, the execution time of the construction phase is largely superior

to the one necessary for local search. By performing experiments for a sample size of

100, respectively 1,000, when α = 0.05 and ε = 0.1, we found that the computation

time for the construction step is in average ≈96% of the overall execution time.

We also tested the algorithm on the 1,920 stochastic TGFF instances for a sample

size of 100, when ε = 0.95 and α = 0.05. Table6 shows the average time needed

to find solutions for sets of instances having same number of vertices |V |: 50, 100

and respectively 200 and confirms our assessment on the computational complexity

increasing with the number of vertices.

As reported in Table7, the majority of robust solutions (68.33%) are found without

the need to increase the capacity of each node Cn (column “1”). While in ≈14% of

cases a multiplication factor of 1.15 for Cn is required to reach probabilistic solutions

(usually for initial instances with limited node capacity), for 12.4% of instances, our

method is unable to find solutions (column “NA”).We can remark however that for the

last category, the initial deterministic GRASP also has not found solutions and only

11 additional instances are not solved for the chance-constrained version. Moreover,

the stochastic method finds more feasible solutions than its deterministic counterpart,

since it is more flexible by allowing the increase of the node capacity.

We have also compared the quality of the solutions with those found in the deter-

ministic case when the capacity of the node remains the same.

There are 1,312 out of 1,920 total instances (68.33%, see Table7) for which our

algorithm is able to find a feasible mapping without having to increase the capacity

of the nodes. We did the comparison of the quality of solution for 1,297 of these

instances for which the deterministic GRASP algorithm was also able to deliver a
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Table 8 Quality of stochastic

versus deterministic feasible

solutions for same Cn : TGFF

instances

% Instances

sols ≤ sold + 5% 81.72

sols ∈]sold + 5%, sold + 7%] 5.17

sols ∈]sold + 7%; sold + 10%] 4.93

sols > sold + 10% 8.17

feasible placement. The results are synthesized in Table8 where the value of the

stochastic solution sols is compared to the deterministic solution sold . For more than

81% of the 1,297 instances, the value of the stochastic solution is at most 5% different

from the one of the deterministic instance. For another ≈5% of cases, the stochastic

solutions are within 5 and 7%, respectively within 7 and 10%, of the values of their

deterministic counterparts.

We can conclude thus that, in a vast majority of cases, it is possible to take into

account the real variations of the parameters in order to have robust solutions without

compromising too much of their quality.

8 Conclusion

In this paper we addressed the problem of joint placement and routing of dataflow

applications on a clusterized architecture, for both deterministic and stochastic cases.

In order to find routable placements, we have designed a GRASP for the deterministic

version which was further adapted to the stochastic case. By using the robust binomial

approach introduced in Stan et al. (2012), we solved the stochastic version under

probabilistic constraints with uncertainty affecting the weights of the tasks. For each

assignment of a task to a cluster or a change on the current mapping, the routability

is verified via a shortest-path algorithm on a residual graph, build from the initial

architecture and updated constantly.

Extensive experiments were performed either on random generated instances or

on real data obtained for the motion target application. When tested on a benchmark

composed of 1,920 synthetic graphs, for 25% of cases, our GRASP method found

mappings which are also routable while a sequential algorithm did not find any valid

solutions. Also, for the benchmark consisting of motion target data, for a reduced

maximal available bandwidth on the arcs of the network, our algorithm is able to

find routable placements of good quality, within an acceptable execution time for our

context application. Since the TGFF instances we use currently are very constrained

and, thus there are a lot of cases for which a feasible routable mapping is not found

(≈1/3 of cases), we plan in the near future extensible tests with other benchmarks.

As for the stochastic problem, the GRASP is able to find solutions of good quality

without paying too much of a price to obtain robustness. The tests showed that taking

into account the variations of the weights of the tasks is particularly important in cases

when the resources on the clusters are limited.

In the future, we plan to investigate several directions. The first one is to design

a more efficient implementation of our GRASP by ameliorating the local search,
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through the use of other neighbourhoods (e.g. cyclic exchanges). Also, the quality of

the routing has to be further refined, one solution being to add in our problem model

latency constraints. Finally, we have to complete our stochastic analysis by also taking

into account the uncertainty affecting the bandwidths between tasks.
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