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ABSTRACT
In this work we present Armadillo a compilation chain used
for compiling applications written in a high-level language
(C++) to work on encrypted data. The back-end of the
compilation chain is based on homomorphic encryption. The
tool-chain further automatically handle a huge amount of
parallelism so as to mitigate the performance overhead of
using homomorphic encryption.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration, compilers

General Terms
Security

Keywords
Homomorphic encryption; compilation chain; parallel exe-
cution.

1. INTRODUCTION
In parallel with the research work which has lead to dra-

matic improvements with respect to the computational over-
head of homomorphic encryption (research which has been
conducted for the most part within the cryptographic com-
munity) the compilation and parallelism community has also
started to grow a strong interest to homomorphic encryption
techniques as a new execution environment for computer
programs with a highly promising practical relevance. In
particular, it should be emphasized that a homomorphic en-
cryption system mostly provides bit-level operators, hence
intrinsically low level. Thus, making the connection between
an algorithm written in a high-level programming language
and such a low-level execution environment requires a se-
quence of non-trivial transformations, that is, a compiler.
This even more so if it is required that the performance hit

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SCC’15, April 14-17 2015, Singapore, Singapore.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3447-1/15/04 ...$15.00.
http://dx.doi.org/10.1145/2732516.2732520.

of homomorphic execution be mitigated, as much as possi-
ble, by means of optimised code generation and parallelism.

In this paper, we present Armadillo, a compiler and code
generation environment aiming at bridging the gap between
the level of abstraction of rather complex programs and al-
gorithms, level of abstraction at which application designers
are working, and the low-level formalism of homomorphic
encryption. Armadillo aims at addressing the software en-
gineering issues of cost-effectively writing programs for exe-
cution over encrypted data and automatically handling the
large amount of parallelism required to do so with non pro-
hibitive performances. Indeed, parallel programming and
parallel program debugging are very difficult tasks for main-
stream applicative programmers and generally must be au-
tomated in order not to induce large (and often underesti-
mated) development costs. By providing an optimizing com-
piler and parallel runtime environment, Armadillo is thus a
first attempt to address both facets of the software engineer-
ing cost issue of operationnally using homomorphic encryp-
tion. The first version of Armadillo is a pragmatic assembly
of software building-blocks, some of them already existing
and borrowed for seemingly unrelated fields, which demon-
strates the possibility of building a full blown compiler envi-
ronment for homomorphic encryption-based computing over
encrypted data as well as of doing so at low software engi-
neering cost and with decent performances on simple yet
useful algorithms. In essence, Armadillo also provide a plat-
form for the development and validation of more advanced
homomorphic encryption code generation and optimization
techniques. Furthermore, other cryptographic constructions
(e.g. garbled circuits, functional encryption) can be inte-
grated in Armadillo compilation chain.

2. FULLY HOMOMORPHIC ENCRYPTION
An encryption scheme describes the way of encrypting

and decrypting plaintext messages such that finding which
is the plaintext message from encrypted data (or ciphertext
in what follows) is either very hard or even impossible. An
encryption scheme is said to be homomorphic when some
operations on plaintext messages can be done homomorphi-
cally, that is directly in the space of ciphertexts (without
decrypting them). Addition and multiplication are two op-
erations on plaintexts which can be done homomorphically,
although other operations can be found in the literature. An
encryption scheme is called fully homomorphic when both
operations (addition and multiplication) are supported. A
fully homomorphic encryption scheme allows to execute any
boolean circuit directly on encrypted data. The first prac-
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tical (to some extent) fully homomorphic encryption (FHE)
scheme was proposed by Gentry [12].

For security reasons a noise component is added to the
ciphertext during the encryption. The noise component is
a common characteristic for FHE schemes. Each new ho-
momorphic operation applied on the ciphertexts increases
the noise component in the resulting ciphertext. After a
(predefined) number of homomorphic operations the noise
is so large that no decryption is possible. Usually the noise
growth induced by the addition operation is smaller than the
noise growth induced by the multiplication operation. That
is why many authors consider only the multiplicative depth1

of evaluated circuits when FHE schemes are parametrized.
The ciphertext and plaintext in FHE schemes are either

integer or polynomial ring elements. According to the liter-
ature the schemes over polynomial rings are asymptotically
more efficient than the schemes based on integer rings [6]. If
the ciphertexts sizes in both cases are roughly the same then
the computations are heavier and the additional data (pub-
lic and evaluation keys) have larger sizes for schemes over
integer rings. In return the learning with errors (LWE) prob-
lem, on which is based the security of integer ring schemes,
is better understood than the ring-LWE problem.

It can be considered that the plaintext space in FHE
schemes are integer quotient rings Zt (t ≥ 2), in other words
the plaintext are integers modulo t. We shall use modulo 2
plaintext in order to extend the set of supported high-level
programming language instructions. Actually using FHE
schemes encrypted data dependent control instructions are
realisable only when the plaintext is binary. The majority of
FHE schemes have a common set of operations: parameter
generation, key generation, encryption/decryption, homo-
morphic addition and multiplication of ciphertexts, etc. Ad-
dition and multiplication operations can also be performed
with one non-encrypted input, in this case the homomorphic
operations are much lighter.

3. ARMADILLO COMPILATION CHAIN
In what follows, we consider fully homomorphic encryp-

tion schemes which support two operations: addition and
multiplication modulo 2. These operations can be seen as
XOR and AND logic gates. A program written in a high-
level language is transformed into a boolean circuit in order
to be able to execute it homomorphically. The Armadillo
compilation chain provides an easy to use compiler which
builds a privacy-preserving binary for an application writ-
ten in a high-level language. The compilation chain is classi-
cally composed of 3 layers: a front-end, a middle-end and a
back-end. The front-end transforms code written in the in-
put language (C++) into its boolean circuit representation.
The middle-end layer optimizes the boolean circuit produced
by the front-end. The back-end constructs a binary which
homomorphically executes the boolean circuit on encrypted
data. In this work we limited ourselves only to shared mem-
ory architecture back-end (using C++/OpenMP language),
but the software design of Armadillo allows to easily add
supplementary backends. In the next sections we describe
each layer of the compilation chain.

1Multiplicative depth is the number of sequential homomor-
phic multiplications which can be done on freshly encrypted
ciphertexts in order to be able to decrypt and retrieve the
result of multiplications.

3.1 Front-end
The front-end aims to transform a C++ code into the

form of a boolean circuit. This representation is build using
a transparent programming interface. The boolean circuit
and the programming interface which builds it is defined in
what follows.

3.1.1 Boolean circuit
A boolean circuit is an acyclic directed graph G = (V,E)

with a set of vertices V and a set of edges E. The set of
vertices can be split into 3 independent sub-sets:

• Vertices without a predecessor define circuit inputs.
An input vertex can be either a boolean input variable
or a boolean constant (“0” or “1” input vertices).

• Vertices representing a gate applying a basic boolean
function to the values of its predecessors. The input
degree of gate functions is either 1 or 2, defined by the
function they represent.

• Vertices without a successor define circuit outputs. An
output vertex has a single predecessor.

3.1.2 Generation
The generation phase builds the boolean circuit represent-

ing all the operations applied to the input bits during a nor-
mal execution. To achieve this, from an algorithm expressed
in C++, we take advantage of the so-called template classes.
We provide a class SlicedInteger whose instantiations rep-
resent encrypted variables used in the algorithm.

The template class of composite integers SlicedInteger

encodes a collection of objects representing its bits, and thus
splits integer operations in a bit-wise fashion. Splitting al-
gorithms at bit level is not novel and has been used before
[19, 9]. Adding two objects of this class is implemented as
a standard adder with carry propagation. The template is
instantiated with a basic integer type, which defines its size
in bits. The bits are represented by objects of a BitTracker

class, which tracks operations and records them under the
form of a boolean circuit. Although any boolean circuit can
be represented in a restricted basis with only two boolean
operators (e.g. AND and NOT is a complete basis) we pro-
vide more boolean operators in order to ease the building
of integer operations. Objects of an instantiated SlicedIn-

teger template are compatible with the basic integer used
as template parameter, which allows the generation of a
boolean circuit from common code. Except that only vari-
able declarations must be changed from basic integer type
to SlicedInteger. Some important compiler features must
be respected in the implementation of the SlicedInteger

class, such as signedness and integer conversions. Conver-
sion operations from basic integer types to SlicedInteger

type are provided. In this way it is possible to combine and
integrate seamlessly basic integer types with SlicedInte-

ger in a C++ algorithm, thus non-encrypted and encrypted
variables (in agreement with FHE semantics).

When a sliced integer is instantiated from a constant, all
its bits refer to the corresponding constant input vertex in
the boolean circuit. The only way to define a variable value
for the bits of a sliced integer is to read it from a standard
C++ stream object. Doing so creates new input vertices in
the boolean circuit and the read bits refer to these new ver-
tices. Writing a bit to a standard C++ stream creates new
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#include <iostream>
#include <stdint.h>
#include "integer.h"
void f
  (std::istream &i,
   std::ostream &o)
{
  SlicedInteger<int8_t> a,b;
  i >> a >> b;
  o << a;  
}

a7 a6 a0... 10b7 b6 b0...

...o7 o6 o0

(a) Instantiation of input and output nodes in boolean cir-
cuit. The execution of the C++ code on the left creates
the boolean circuit on the right. Inputs have a white bor-
der and outputs a black one. Edges are added to refer the
written bits.

#include <iostream>
#include <stdint.h>
#include "integer.h"
void f
  (std::istream &i,
   std::ostream &o)
{
  SlicedInteger<int8_t> a,b;
  i >> a >> b;
  b = b ^ 0x01;
  a &= b;
  o << a;
}

a7 a6 a0... 10b7 b6 b0...

xor xor xor...

...

and

o7 o6 o0

andand ...

(b) Instantiation of gate nodes in boolean circuit. The ex-
ecution of the C++ code on the left creates the boolean
circuit on the right. Input nodes corresponding to C++
input variables are treated using boolean XOR and AND
gates.

Figure 1: Boolean circuits generation from C++ code ex-
amples.

output vertices in the boolean circuit and the written bits
refer to these new vertices. The number of created (input or
output) nodes correspond the the bit-size of the instantiated
SlicedInteger class. Sub-figure 1a gives an example of this
concept.

Performing operations on the sliced integers creates gate
vertices in the boolean circuit. When a logic operation is
applied to two bits, a gate vertex is created. The resulting
bit refers to this new gate vertex, and the vertices referenced
by the input bits are added as predecessors to the new gate
vertex. Sub-figure 1b gives an example of this concept.

In our interface header file integer.h, we define an integer
type per possible integer size. The definition of these types
depends on a configuration flag CONFIG INTEGER, which
allows to switch from a normal algorithm to a sliced version
one transparently: EXECUTE – the integer type is the same
as the basic integer type, execution goes as usual and allows
normal developping/debugging of the algorithm; COMPILE
– the integer type is an instantiation of the SlicedInteger

class with the corresponding basic integer type, the execu-
tion tracks the operations and builds the boolean circuit.

The implementation of algorithms using encrypted vari-
ables has an issue: the data-dependent control. Control flow
statements (conditionals, loops) are accepted by our com-
piler only with non-encrypted data parameters. The follow-
ing things are impossible: conditional instructions (jumps)
with an encrypted integer in the condition and data depen-
dent loops. These limitations are inevitable, otherwise some
information on the plaintext of the variables would leak from
the control flow. For example one could find encrypted vari-
able value in a loop condition from the number of loop iter-
ations.

It can seem that this issue seriously limits the usefulness of
the compilation chain but as we shall see further several op-
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Figure 2: Execution times of homomorphic operations in
function of multiplicative depth. Measurements have been
performed using FHE scheme [10] (parameters: security λ =
128, cyclotomic polynomial x1024 + 1).

erations which depend on data are possible. For conditional
assignment, as in the C++ ternary instruction d=c?a:b, the
problem is solved by providing function select(a, b, c) which
returns a when c equals to one and b when c equals to
zero. This function is implemented using boolean expres-
sion (c&a [i])⊕ (c̄&b [i]) applied on each bit i of variables a
and b. Conditional assignment is equivalent to a two-input
multiplexer circuit. Array dereferencing (with an encrypted
index) is a generalization of conditional assignment where
the condition variable has multiple values. Array derefer-
encing can be done by creating an array object which when
dereferenced would insert several multi-input multiplexers.
Equivalent circuits are described in [17]. Even under these
limitations we were able to implement several real life ap-
plications. One example is the AES cipher which we will
describe later.

3.2 Middle end
Homomorphic encryption schemes must be parametrized

in function of the multiplicative depth of circuits to evalu-
ate. Execution time of a homomorphic multiplication (AND
gate) is significantly larger than that of an addition (XOR
gate). In figure 2 are represented empirical measurements
of homomorphic operations execution times. Homomorphic
addition is more than 100 times faster than homomorphic
multiplication. More details about our implementation are
given in section §3.3. In what follows we shall ignore the
number of XOR gates in the circuit because their execution
time is significantly smaller when compared to execution
time of AND gates.

The middle-end phase of the compilation chain aims at
optimizing the boolean circuit obtained from the C++ code
generated in the precedent phase. The purpose is to decrease
the total execution time of the boolean circuit on encrypted
data.

The primary objective will be to minimize the multiplica-
tive depth of the boolean circuit. Reducing the multiplica-
tive depth of a circuit allows to decrease the execution time
of every AND gate. It is possible to reduce the multiplica-
tive depth at the price of an increased number of AND gates
as long as the total execution time is smaller2. A secondary

2For example if the multiplicative depth of a circuit de-
creases from 8 to 7 then the number of AND gates could
increase at most by 30% and the resulting execution time
will not increase. We have used execution time measures
from figure 2.

15



objective will be to minimize the number of logical AND
gates in the boolean circuit. The multiplicative depth must
not increase in the latter case.

In the literature one can find lots of works on boolean
circuit optimization in the field of hardware synthesis (FP-
GA/ASIC). Circuit optimization algorithms from hardware
synthesis have objectives and constraints that differ from
the optimization needed in our case. For example XOR
gates implemented in hardware are more expensive than
the AND gates, which is completely in contradiction with
optimization on boolean circuits for FHE. In hardware syn-
thesis the propagation delay can be an optimization goal
besides circuit size. The propagation delay is equivalent to
the circuit depth computed with distinct propagation delays
on each gate. The minimization of the circuit depth is not
equivalent to the minimization of the circuit multiplicative
depth.

Despite the fact that hardware boolean circuit optimiza-
tion tools are not well suited for FHE boolean circuit opti-
mization we have, as a first approach, adapted existing tools
to our case. Besides, doing so allows us to take advantage
from the existing expertise in the hardware synthesis do-
main. An open source software system used for hardware
synthesis is ABC [2]. ABC software system comprises a set
of tools used for synthesis and verification of boolean cir-
cuits. It is an open-source environment providing implemen-
tations of the state-of-the-art combinational and sequential
synthesis algorithms.

ABC optimization tools are based on And-Inverter Graphs
(AIGs). AIGs are logic circuits with two-input AND gates
and inverters (negations) on edges. Logic circuit with only
one gate type promise to decrease the complexity and the
search space of circuit optimization algorithms. For more
details about AIGs and ABC optimization tools refer to
[20]. ABC reads different circuit formats and transforms
them into AIG representation before applying various opti-
mization algorithms. The front-end of our compilation chain
exports boolean circuits in blif format [1]. The same format
is used for boolean circuit outputted by the middle-end, once
optimized.

We can assume that the AIG representation is beneficial
to the optimization of FHE boolean circuits. ABC opti-
mization tools have two objectives: circuit size and delay
minimization. The size of an AIG circuit equals to the num-
ber of AND gates it contains and the delay is the length of
the longest path from input to output nodes. At first sight
it seems that this corresponds perfectly to optimization ob-
jectives for FHE boolean circuits, as AIG size correspond
to FHE circuit size (number of AND gates) and AIG delay
corresponds to FHE circuit multiplicative depth. Unfortu-
nately this is not quite true. A counterexample is the XOR
gate which corresponds to 3 AND gates and depth 2 circuit
when transformed to AIG.

ABC package is script based. ABC takes a succession of
optimization steps as input and applies them onto a boolean
circuit. After several empirical studies we have deduced that
the following optimization script gives satisfactory optimiza-
tion results:

resyn2

if -g -K 15 -C 1024

resyn2

if -g -K 15 -C 1024

map

First step (resyn2) is a re-synthesis command which aims
at minimizing circuit size as primary objective and circuit
depth as secondary objective. Next command (if) aims
to decrease circuit depth even if the circuit size increases
lightly [21]. These operations are applied twice. Boolean cir-
cuit optimization for homomorphic execution allows a non-
negligible increase in circuit size when the multiplicative
depth of the circuit lowers. In ABC we were not able to
express such type of constraints.

The last command map performs standard cell mapping of
the AIG circuit. In this way we hope to additionally decrease
circuit size and depth by mapping 3 AND gates to one XOR
(inverse transformation described earlier). We use a cell li-
brary containing AND, OR, XOR and NOT gates. ABC
was unable to perform cell mapping using a library with
AND and XOR gates only. We remind that an OR gate can
be expressed using one AND gate and several XORs, so an
OR gate is equivalent to an AND gate for FHE circuit min-
imization objectives. A NOT gate can be expressed using
a XOR. The gates AND, OR have unit size and delay and
XOR, NOT gates have zero size and delay. The mapping
algorithm will be forced to use less AND and OR gates in
this case.

The execution time of ABC is not an issue for medium-
sized circuits we have tested. Although one could sacrifice
more time on optimization steps for gaining in homomorphic
circuit execution time.

Circuit multiplicative depth and size in terms of AND
gates is not always minimized by the previous ABC opti-
mization script, sometimes it even increases. When building
the AIG graph from the initial circuit each XOR gate is re-
placed by an equivalent sub-graph of only AND gates. The
optimizations performed by the ABC tool minimize the total
number of AND gates disregarding inherent structures rep-
resenting XOR gates. The AND gates of these structures
are potentially merged/simplified so that the initial XOR
gates cannot be recovered by the mapping step. In this case
we apply only simple redundancy removing optimizations
(balance) so that XOR gates could be recovered during the
mapping step. The following script is used:

balance

map

3.3 Back-end
The back-end takes as input an optimized boolean cir-

cuit from the middle-end step and generates a binary which
executes the boolean circuit homomorphically. Addition-
ally, in this step, are generated encryption, decryption and
key-chain generation binaries. The generated binaries are
linked to a homomorphic encryption library which is dimen-
sioned dynamically to support the multiplicative depth of
the boolean circuit to execute.

We have implemented the FHE scheme described in [10]
without the bootstrapping step. The ciphertexts in this
scheme are polynomial ring elements. Using the Chinese Re-
mainder Theorem several plaintext bits can be packed into
a ciphertext, see more details on this batching technique in
[13]. The number of packed bits depends on the cyclotomic
polynomial defining the ciphertext polynomial ring. In the
actual configuration of our back-end only SIMD execution
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is supported (no ciphertext slot permutation has been im-
plemented). The dimensioning of this FHE scheme is done
automatically in function of the multiplicative depth, the de-
sired security level (λ parameter) and eventually on the num-
ber of plaintext bits to pack into a ciphertext. Cyclotomic
polynomial operations used in the dimensioning procedure
(e.g. polynomial factoring used for batching) are performed
using Sage [22]. The dimensioning parameters (cyclotomic
polynomial defining the polynomial ring, ciphertext coeffi-
cient size, random distribution parameters, etc.) are read at
execution from a configuration file. The flint [15] library is
used to perform polynomial operations. Our FHE scheme
has a generic interface. Other FHE schemes implementing
this interface can be seamlessly incorporated into the com-
pilation chain.

The boolean circuit generated by the middle-end has 4
types of gates: AND, OR, XOR and NOT. Each OR and
NOT gate are replaced by an equivalent circuit composed
of AND and XOR gates. The negation gate is replaced by
a XOR gate on of whose inputs is one. The OR gate has
two equivalent representations: (i) a ‖ b = (a&b) ⊕ a ⊕ b
with 2 XORs or (ii) a ‖ b = ((a⊕ 1) & (b⊕ 1)) ⊕ 1 with 3
XOR gates. We use the one with 3 gates. Although one
more XOR gate is used, these XORs are performed with
a non-encrypted input (constant value one), which in FHE
schemes are lighter.

A C++ code is generated from the boolean circuit com-
posed of AND and XOR gates. Each gate is executed using
a call to a respective function from the homomorphic en-
cryption library. The generated C++ corresponds to either
sequential circuit execution or parallel (for shared memory
platforms) circuit execution. In the latter case circuit gates
are scheduled off-line using a list schedule algorithm. We
use a FIFO priority queue for dispatching gate executions.
In the tests we have performed, the priority function did not
significantly changed circuit execution time. The number of
parallel execution threads to use is explicitly specified by
user.

4. AES IMPLEMENTATION EXAMPLE
In this section we are going to show the easiness of im-

plementing the AES-128 cipher using our compilation chain.
We start by a brief overview of the AES cipher.

The AES is a block cipher which takes a 128-bit input data
block, a 128-bit cipher key and outputs a 128-bit output. It
consists of 10 equal rounds (with different round keys) ap-
plied sequentially on the input data block transformed into a
4×4 state matrix of bytes. Each round is divided into 4 steps
which are applied on the state matrix: AddKey, SubBytes,
ShiftRows and MixColumns (not applied at last round). In
what follows we describe the steps used in encryption mode.
AddKey is a XOR of the state matrix with the current round
key. The ShiftRows step is a rotation to the left of state ma-
trix row k by a k − 1 places. SubBytes or S-box operation
performs an inversion in the finite field GF

(
28
)

followed by
an affine transformation. Finally, the MixColumns step mul-
tiplies (finite field GF

(
28
)

multiplication) the state matrix
by a predefined 4× 4 matrix.

Round keys are obtained from the cipher key using a key
expansion or key schedule procedure. From the cipher key
rk0 (the cipher key acts as the first round key) 10 more 128-
bit keys rk1, . . . , rk10 are derived, one for each round. The
cipher key rk0 is used for the additional AddKey step applied

on input data. Key expansion starts from the cipher key
arranged in a 4 × 4 matrix. The first column of the next
round key rkp is obtained by adding together (additions are
done in a finite field, i.e. bitwise XOR) the first and the
modified last column of round key rkp−1. The modification
of the last column (ScheduleCore) consists in rotating the
column one byte to the left. Applying S-box operation on
each column element and adding to the first column element
2 exponentiated to the round number (in Rijndael’s finite
field). Other columns (2, 3 and 4) of rkp are obtained by
simply adding previous column from rkp to the column on
the same position from rkp−1.

The decryption of an AES encrypted block is done equiv-
alently by applying a set of inverse round steps in the op-
posite direction. The round keys are computed using the
same key expansion procedure and are respectively applied
in reversed order. Key expansion procedure does not change
in the standard implementation of AES regardless of the
used mode (encryption or decryption). The multiplicative
depth of the AES-128 encryption is 40 together with the
key expansion, whereas in decryption mode the multiplica-
tive depth is already 80. This is due to the fact that the
last round key rk10 (which is used first in decryption) has
already a multiplicative depth of 40. In order to decrease
the multiplicative depth in this mode we have implemented
a different key expansion procedure for decryption, called
further on decryption key expansion. Decryption key ex-
pansion starts from the last round key rk10, which is read
as input, and performs the usual key expansion in the oppo-
site direction. The multiplicative depth of AES decryption
with the modified key expansion procedure gets down to 40.
This modification of the AES algorithm does not alter its
security.

We have implemented the AES-128 in different execution
modes: encryption or decryption with derived round keys
(key schedule) or read round keys. The C++ implementa-
tion of AES is done at bit-level. Optimized circuits from [5]
are used for S-box and reverse S-box3. The Armadillo com-
piler builds a boolean circuit from the C++ code. There
are 128 input nodes in the boolean circuit for the input data
block and either 128 input nodes for the initial round key
(rk0 for encryption/rk10 for decryption) or 1408 for the ex-
panded round keys. The number of output nodes is 128
(one for each bit in the output data block). The generated
boolean circuit has 5440 AND nodes for the encryption/de-
cryption rounds and 1360 AND nodes for the key expansion
part. As said earlier the multiplicative depth is 40 in all the
modes.

Further on we provide a C++ code sample, used as input
to our compiler, which performs the key schedule procedure
in encryption mode (KeySchedule function):

void KeySchedule(Integer8 ** key , Integer8 ***
roundKeys) {

Integer8 temp [4];

/* First round key is the cipher key itself */
for (unsigned int c = 0; c < 4; c++) {

for (unsigned int r = 0; r < 4; r++) {

3A straightforward S-box implementation using a truth-
table has given a multiplicative depth of 10 after ABC op-
timizations. We had decided to use the optimized by hand
S-box circuit because an AES circuit with a multiplicative
depth 100 would have given an execution ˜10 times slower
(estimation) than for the multiplicative depth 40.
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roundKeys [0][r][c] = key[r][c];
if (c == 3) temp[r] = key[r][c];

}
}

/* Compute next rounds keys from previous ones */
for (unsigned int rnd = 1; rnd < 11; rnd++) {

for (unsigned int c = 0; c < 4; c++) {
if (c == 0) ScheduleCore(temp , rnd);
for (unsigned int r = 0; r < 4; r++) {

roundKeys[rnd][r][c] =
roundKeys[rnd - 1][r][c] ^ temp[r];

temp[r] = roundKeys[rnd][r][c];
}

}
}

}

The C++ KeySchedule function takes as input a pointer
key to the cipher key arranged in a 4×4 matrix. Parameter
roundKeys is used to output derived round keys. Integer8

is a typedef for a 8-bit SlicedInteger variable type. As we
can see the implementation is simple and straightforward. If
we replace Integer8 by a standard 8-bit variable type (for
example unsigned char) the same C++ code will compute
round keys on non-encrypted data.

We have executed the AES-128 decryption algorithm with
reverse key schedule (generated by the Armadillo back-end)
on a mid-end 48-core server (4 x AMD Opteron 6172 pro-
cessors with 64GB of RAM). No ciphertext batching is em-
ployed. Although batching will permit to substantially in-
crease the throughput (i.e. the number of processed AES
blocks per unit of time) the latency will increase too. Re-
fer to [18] for a more detailed discussion of latency versus
throughput in the case of homomorphic encryption. FHE
scheme security parameter λ is 128 and the used cyclotomic
polynomial is Φ2048 (x) = x1024 + 1. Other FHE parameters
are derived automatically following the procedure described
in [10]. Obtained polynomial coefficient size is approxima-
tively 23kbits, which corresponds to a 5.6MB ciphertext.
The FHE key generation procedure takes 18 sec., FHE en-
cryption of one bit 8 sec. and FHE decryption of one bit
0.2 sec. The obtained execution time for AES decryption is
of approximatively 18 minutes, RAM memory usage is un-
der 40GB. The same execution time is obtained for the AES
encryption algorithm.

5. RELATED WORKS
Several domain specific languages for secure multi-party

computation (SMC) have been proposed in the literature, an
non-exhaustive list of such includes [7, 16, 4, 11, 3]. SMC is a
cryptographic model in which n parties compute a common
function, for example Yao’s garbled circuits. In these models
the communication between parties is proportional to circuit
size to evaluate, whilst in FHE schemes the communication
is proportional only to input data size. VIFF [7] is a frame-
work built on-top of Python language which allows to easily
specify SMCs. The arithmetic (boolean) circuit to execute is
specified by the user. No circuit optimization is done by the
framework, so it is up to the user to do this. The CBMC-
GC [16, 11] is a C language compiler and framework for per-
forming secure two-party computations (STC). It is an ex-
tension of the bit-precise model checker used to verify ANSI
C source code. CBMC-GC transforms a C program into an
optimized boolean circuit which can be executed by a STC
platform (garbled circuits). Sharemind [4, 3] is a framework
for MPC. It can be seen as a virtual machine which perform

multi-party computations. Applications can be written in
a high-level language SecreC (C extension) or in assembly
language for the Sharemind virtual machine. The Armadillo
front-end described in this paper most closely resembles to
the VIFF framework. Both systems use a programmatic ex-
tension of an high-level language (C++ for Armadillo and
Python for VIFF) to facilitate the use of cryptographic con-
structions (MPC and FHE). Armadillo’s front-end also au-
tomatically bit-slices high-level C++ instructions. Unlike
the VIFF framework, in Armadillo a middle-end is used to
optimize obtained boolean circuits.

Homomorphic execution implementations for the bit-sliced
AES decryption algorithm were previously reported in [14,
8]. The authors implemented the AES decryption but no key
schedule procedure is done. The 11 round keys are inputs
to the AES circuit. The size of the boolean circuit is smaller
by 25% in this case. Without the key schedule procedure
the authors did not have to cope with the multiplicative
depth 80 of the usual AES decryption implementation. A
direct comparison of execution performance between these
implementations and our is inappropriate because of differ-
ent FHE schemes. One of the objectives of [14, 8] was to
increase the AES execution throughput by using batching
techniques. In contrast to this, our objective was to de-
crease the latency. That is why we have employed explicit
parallelization of boolean circuit execution and no batching.
We shall also note that both these implementations are us-
ing the NTL library for polynomial arithmetic. The NTL
library has a restricted support for multi-threading, so an
explicit parallelization of boolean circuit execution is most
likely impossible in current conditions. And last but not
least, we have implemented the AES algorithm in a high-
level language, compared to the manual AES circuit imple-
mentation.

6. CONCLUSIONS AND PERSPECTIVES
In this paper we have presented the Armadillo compi-

lation chain used for compiling privacy-preserving applica-
tions. The compilation chain consists of 3 phases: high-level
language (C++) code transformation to a boolean circuit
(front-end), optimization of the boolean circuit (middle-end)
and execution of this circuit on encrypted data using ho-
momorphic encryption (back-end). The implementation of
applications using the homomorphic encryption in back-end
becomes easier with Armadillo. We have implemented the
AES-128 algorithm in order to show this. The execution
latency of AES algorithm is only 18 minutes which repre-
sents an advancement compared to existing homomorphic
AES implementations. For the AES decryption algorithm
we have introduced a modification in the key schedule pro-
cedure in order to decrease the multiplicative depth of cir-
cuit from 80 to 40. Although the compilation chain allows to
build homomorphic encryption based applications and seems
complete much future work have to be done. In what follows
we shall elaborate some perspectives which seem promising
to us.

We have restricted ourselves to binary operations (boolean
AND and XOR) of FHE primitives, although FHE allows to
perform operations homomorphically on integers modulo t
for t > 2 or more generally in other finite fields. This as-
pect of homomorphic encryption is not taken into account
in our compilation chain. Using for example Z256 as plain-
text permits to execute homomorphically addition and mul-
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tiplication operations modulo 256 directly, which for some
applications will provide a performance increase. Another
aspect of our front-end is that the high-level code is directly
transformed into a boolean circuit, although passing by some
sort of intermediate representation (e.g. arithmetic circuit)
will provide more optimization possibilities and potentially
a smaller boolean circuit afterwards.

The current middle-end uses existing boolean circuit op-
timization tool (ABC) from the field of hardware synthe-
sis. As said earlier the objectives of circuit optimization
for homomorphic encryption and hardware synthesis differ.
That is why we execute two optimization scripts and keep
the obtained circuit which has the smallest multiplicative
depth. We think that there is more research to be done
in this direction, thus on optimization of boolean circuits
with multiplicative depth as primary objective and number
of multiplications as secondary objective.

Available FHE libraries in the compiler back-end should
be diversified in order to be able to chose the FHE library
which is the most adapted to the developed application. The
current parallel boolean circuit execution back-end supports
only shared-memory architectures. A promising perspec-
tive will be the development of a back-end for distributed-
memory architectures.
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