
Chapter 4

Introduction to Optimization
Under Uncertainty Techniques

for High-Performance Multicore
Embedded Systems Compilation

Oana Stan and Renaud Sirdey

Abstract The compilation process design for massively parallel multicore-embed-

ded architectures requires solving a number of difficult optimization problems,

nowadays solved mainly using deterministic approaches. However, one of the main

characteristics of these systems is the presence of uncertain data, such as the execu-

tion times of the tasks. The authors consider that the embedded systems design is one

of the major domains for which applying optimization under uncertainty is legitimate

and highly beneficial. This chapter introduces the most suitable techniques from the

field of optimization under uncertainty for the design of compilation chains and for

the resolution of the associated optimization problems.

4.1 Introduction

At the beginning of the twenty-first century, it has become obvious that the per-

formances of single core architectures reached a plateau, the main reasons being

the limits of instruction-level parallelism (ILP) as well as the heat wall for the fre-

quency [39].

Between the only viable solutions left to improve performance was to make use

of additional high-level parallelism, i.e., multiply the number of processing elements

per chip. As a consequence, the standard mainstream and embedded architectures

include, nowadays, at least four generic cores and we are entering into a multicore

era in which the updated Moore’s law states that the number of cores doubles every

two years.

Figure 4.1 [53] captures the general exponential evolution trend of the number of

individual computing units according to the release years of chips (heterogeneous
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Fig. 4.1 Number of individual processing units in heterogeneous chips (e.g., AMD, NVidia graph-

ics, IBM Cell BE, etc.) and homogeneous chips (e.g., Intel Xeon, IMB Power, STM, Tilera, Kalray,

etc.) [53]

and homogeneous). If the generalization of multicore continues according to this

trend, at the end of the decade, we will reach at least a thousand of generic cores.

However, according to Gustafson’s law [37], as more computing power is avail-

able, new and more powerful applications make their appearance in order to benefit

from the available capabilities. Already, the latest embedded applications for video

and image processing (using complex compression and decompression algorithms),

video games, scientific computing, or data security demand a computer power ten to

hundred times superior to that of a few years ago.

Therefore, careful attention has to be paid when designing embedded systems

solutions since programming applications that fully exploit the computing power

and the parallelism is a difficult task.

As we will see further, the design for efficiently embedded manycore systems

requires new programming and execution paradigms as well as innovative compila-

tion technologies. One of the common practices is to make use of operation research

techniques for the different optimization steps during the compilation process of par-

allel applications. Since between the main characteristics of the related optimization

problems is the presence of intrinsic uncertain parameters, we believe that the overall

compilation chain should integrate the latest advances from the optimization field

such as stochastic programming methods and robust optimization algorithms.

Thus, this chapter is dedicated to the study of uncertainties associated with the

embedded domain and to the analyzis of the most appropriate techniques for optimiz-

ing under these uncertainties when designing compilers for parallel embedded appli-

cations. The remainder of this chapter is organized as follows: after a short descrip-

tion of manycore architectures in Sect. 4.2.1, we present the existing approaches

for programming parallel applications with a particular emphasis on dataflow-based
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languages (Sect. 4.2.2). The context and motivation for our study are getting refined

in Sect. 4.2.3. Afterward, in Sect. 4.3, we describe the main sources of uncertainty

affecting the properties of an embedded environment with a particular focus on exe-

cution times. In function of this analysis and taking into account the current state of art

from stochastic and robust optimization fields, we give more details in Sect. 4.4 about

some of the most relevant models and optimization techniques for the compilation of

embedded systems. Also, in the last section, we show how these resolution methods

can be applied in an operational manner for concrete application case studies, such

as the partitioning, placement, and routing of network processes or the dimensioning

of communication buffers.

4.2 Massively Parallel Embedded Systems

According to Flynn’s macroscopic classification of computing systems, realized in

function of the possible interaction patterns between instructions and data, there are

four different theoretical classes of machines: Single Instruction Single Data (SISD),

Single Instruction Multiple Data (SIMD), Multiple Instruction Single Data (MISD),

and Multiple Instruction Multiple Data (MIMD). Between these categories, only the

last three make parallel execution possible, and thus almost all parallel systems today

are either SIMDs, easier to program but for which the parallelism is more difficult

to exploit, or MIMDs, for which each processor is executing its own program flow.

More flexible than SIMD and allowing nonstructured data and conditional or data-

dependent algorithms, the MIMD is a more usual implementation of the multi and

manycore concept.

Also, according to the memory organization, we can distinguish between DMM

(Distributed Memory Machines) and SMM (Shared Memory Machines) systems.

The massively multicore (manycore) type of architecture is a compromise between

the DMM and the SMM solving the problem of scalability of the SMMs for which

it is difficult to exceed 32 processors and the performance issues of the DMMs.

Let us now give an overview of the main components of a massively multicore

architecture, taking as an example the MPPA chip [30].

4.2.1 Manycore Architectures: MPPA Example

A massively multicore (manycore) processor is a parallel computing system, com-

posed of a number of processing cores (at least a dozen), a mix of local and shared

memory, distributed global memory or multilevel cache hierarchy, and an infrastruc-

ture for intercores communication.

Some examples of such embedded multicore architectures already available nowa-

days are [3, 10, 30, 42].
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Fig. 4.2 Overview of Kalray’s MPPA architecture [30]

The Kalray’s MPPA-256 is one of the first homogeneous embedded manycore,

released in 2013 and manufactured using 28 nm CMOS technology. As shown in

Fig. 4.2, this single-chip manycore processor is organized as 16 (4 × 4) computing

clusters and 4 additionally I/O clusters situated at the periphery and providing access

to PCi interfaces, DRAM memory, etc. As the basic processing unit of the MPPA chip,

each computing cluster integrates 16 processing engines (PE) cores, one resource

management (RM) core, a shared memory, and a direct memory access (DMA) engine

for transferring data. The 16 computing clusters as well as the 4 I/O subsystems are

connected through a bidirectional NoC (Network-on-Chip) with a 2D torus topology

and a wormhole route encoding.

4.2.2 Programming for Manycores: Dataflow Oriented

Languages

In order to take benefit of the underlying execution infrastructure, when programming

parallel applications for manycore, one has to handle several difficulties: dispose

of limited and dependent resources (memory, NoC), be able to run correctly large

parallel programs and efficiently exploit the parallelism and the computing power.

There is a real urge nowadays for languages permitting to design efficiently and

without difficulties parallel applications. As noticed several years ago, the usual

imperative programming paradigms (C or Java like) are based on a sequential von

Neumann architecture and thus they are inappropriate for writing effective parallel

programs. Other modern programming languages like MPI, OpenMP and OpenCL

used currently on distributed systems require explicitly managing communications

and synchronizations between tasks.

Some paradigms such as agent-based and dataflow programming languages

allow to overcome several of the above drawbacks, providing mechanisms to mask
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low-level communication and intertasks synchronization, assure execution determin-

ism and easily integrate existing code.

In a dataflow model, a program is described as a directed graph, consisting of

nodes representing tasks (also named agents or actors) and arcs representing unidi-

rectional communications channels. The exchange of data, quantized into tokens, is

realized exclusively through the communications channels and the execution of the

program consists in a sequence of firings or evaluations (which correspond to the

consumption/production of a certain number of tokens).

With the first models emerging in the early 1970s, there are different formalisms

for dataflow-based languages (KPN—Kahn Process Networks [44], DPN—Data

Process Networks [47], CSDF—Cyclo-Static Data Flows [15], etc.) different in their

expressive power and the guarantees they provide.

In the following, we will focus on the CSDF model of computation and on ΣC

[2], a more recent dataflow-based language. In a CSDF model, the number of pro-

duced/consumed tokens can vary from an activation to another in a cyclic manner.

Since programmers do not have to worry about data synchronization and the comput-

ing tasks are only connected through well identified channels, this flexible dataflow

model is well suited for efficiently scheduling and mapping applications on many-

core platforms. ΣC , a C extension programming language based on CSDF, has been

designed for allowing reusability of existing C code, while taking advantage of the

properties of a dataflow models such as the ability to verify absence of deadlocks and

memory bounded execution. Its ability to specify the production and consumption

of each task is used at compile time for different checkings such as buffer sizing,

placement, routing, parallelism refinement, etc.

Thus, once the application has been designed and implemented using a parallel

programming language, it is the role of the compilation chain to make the connection

with the specific execution model for the embedded manycore target. A general

difference between a dataflow compiler and a standard one is the fact that the former

is handling itself the underlying parallelism, easing the role of the designer.

Let us exemplify the compilation process through the ΣC compilation chain.

4.2.3 Compilation of Applications for Manycore Systems: ΣC

Toolchain Example

The ΣC compilation toolchain adapts as best as possible the application code,

generic, to the targeted architecture: number of cores, NoC topology, etc. As such,

even if the language is platform independent, the compiler will automatically map

the parallel program onto a large number of processors, using different architectures

and communication types.

There are four passes in which ΣC compilation process is organized:

• Lexical analysis, parsing and code generation. This first pass, the ΣC front-end,

begins with a lexical, syntactic, and semantic analysis of the code, common to most

renaud.sirdey@cea.fr



102 O. Stan and R. Sirdey

compilers. Afterward, preliminary C codes are generated from ΣC sources either

for offline execution (the instantiation codes of the agents) or for further refinement.

• Compilation of the parallelism. The purpose of the second pass, the ΣC middle-

end, is to instantiate and connect the agents, by executing at compile time the

corresponding codes generated by the first pass.

Once the construction of the application graph is complete, parallelism reduc-

tion techniques by pattern matching [21] are applied and a safe computation of a

deadlock-free lowest bound for the buffers sizes of the links is also performed.

• Resource allocation. The third pass is in charge of resource allocation (in the

larger sense). First, it supports a dimensioning of communication buffers taking

into account the execution times of the tasks and the application requirements

in terms of bandwidths (nonfunctional constraints). Next, in order to realize a

connection with the execution model, it constructs a folded unbounded partial

ordering of task occurrences (and thus, finitely representable).

This pass is also responsible of placement and routing, with the objectives of

grouping together (under capacity constraints for each cluster of the architecture)

the tasks which communicate the most, mapping these groups of tasks to the

clusters and finally, computing routing paths for the data traversing the NoC.

• Runtime generation and link edition. The last pass, the ΣC back-end, is respon-

sible of generating the final C code and the runtime tables. Also, during this

stage and using C back-end compiler tools, the link edition, and the loadbuild are

realized.

4.2.4 Characteristics of Optimization Problems Associated

to the Compilation Process for Manycore

As seen in the previous section, the compilation process of an application for a

massively parallel architecture is becoming rather complex and requires solving

several difficult optimization problems.

Nowadays, the compiler design implies the application of advanced operations

research techniques not only to the so-called back-end (by solving optimization prob-

lems such as buffer sizing and instruction scheduling, e.g., [14, 38, 49]) but also more

upward and all the long of the compilation process, in order to efficiently allocate and

exploit the interrelated resources offered by parallel architectures. Between the more

recent optimization problems, we can mention the placement/routing for multicores

or the construction of a partial order under throughput constraints (e.g., [35, 36]).

Moreover, most of the existing studies treating optimization problems for embed-

ded parallel architectures propose deterministic models and we noticed only a few

studies which take into consideration parameter variations and apply the techniques

of optimization under uncertainty to the embedded domain (e.g., [22, 48, 51]).

Still, one of characteristics of the manycore systems is the presence of intrinsic

uncertain data occurring in the definition of these related optimization problems,
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such as execution times or latencies. As we will see further, experimental studies

from both fields of operations research and program compilation have shown that

considering a fixed value for the uncertain parameters, respectively, execution times

(usually the mean value), can lead to wrong estimates and optimization solutions not

always feasible. As such, developing and testing optimization techniques taking into

account uncertainty for this field seem beneficial and even necessary.

In order to conceive and develop methods of optimization under uncertainty which

are adequate to the domain of compilation for manycores, a first step consists in

identifying, analyzing, and, if possible, modeling the sources of uncertainty specific

to this area. As such, we proceed in the next section with a qualitative analysis of the

uncertainty sources, with a particular emphasis on the execution times.

4.3 Characterization of the Uncertainties

in the Context of Manycores

One of the main sources of uncertainties related to the domain of embedded sys-

tems lies in the intrinsic indeterminism of execution times for computing kernels of

intermediate granularity.

4.3.1 Overview of the Execution Times

In fact, there are two main sources of uncertainty related to the execution times of

embedded systems:

1. intrinsic dependency on the data. Since usually the computation code of an appli-

cation depends on the input data, there are several treatments which could be

executed by the application, translating into different data-dependent paths, with

potentially different execution times.

2. extrinsic uncertainty due to architecture characteristics. Variations of execution

times are also related to the speculative components (such as caches, pipelines,

or branch prediction) of modern hardware architectures on which the application

is executed.

These sources of uncertainty are not independent and one must take into account

both execution paths and hardware mechanisms.

As described previously, we assume that the embedded application consists of a

number of tasks or agents, which work together to achieve the required functional-

ities. In Fig. 4.3 [71] several relevant properties of the execution time for a task are

revealed. The darker upper curve represents the set of all execution times. The short-

est execution time is often called best-case execution time (BCET) and the longest is

called worst-case execution time (WCET). The other envelope represents a subset of

the measures of the execution times. The minimum and maximum of the lower curve

renaud.sirdey@cea.fr



104 O. Stan and R. Sirdey

Fig. 4.3 Some properties of the execution times of a real-time task [71]

are the minimal and the maximal observed execution times, respectively. Since, in

most cases, the space of all possible executions is too large to fully explore, and

also because of the undecidability problem associated to the running of an arbitrary

program, it is not possible to determine the exact worst and best case execution times.

Most researches dedicated to the timing analysis of execution times consist in

deriving or computing upper bounds for the WCET. For a detailed overview and

survey of methods and tools for estimating WCET, we refer the reader to [71].

4.3.2 Estimating Execution Times Distributions

While the methods for estimating bounds for execution times are getting more and

more complex, by also taking into account the speculative behavior of the target

architecture, they remain justified mainly for hard real-time systems. Instead, for soft

real-time systems, there are more and more studies based on probabilistic analysis

and approaches for scheduling (e.g., [17, 29, 55]) considering that the execution

times of the tasks follow probability distributions.

The problem of estimating the execution times consists in predicting the execution

time of a task on a variety of machines in function of the data set and with a high level

of accuracy. The existing solutions to this problem can be divided into three main

classes: code analysis [63], analytic profiling [33, 45, 73], and statistic prediction

[28, 43].

An execution time estimate found by analysis of the source code of a task is

typically limited to a specific class of architectures and a particular code type. Con-

sequently, code analysis is not very adapted to treat heterogeneous computing. The

profiling technique, first presented by Freund [33], determines the composition of

a task in terms of primitive code types. Code profiling data is then combined with

benchmark data (obtained on each machine and measuring the performance for each

code type). The main disadvantage of this type of methods is that they cannot deter-

mine the variations in the input data set. The third category, the statistical prediction
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algorithms, makes predictions from previous observations. Each time a task executes

on a machine, the execution time is measured and added to the set of past observa-

tions. The quality of estimation depends on the size of the set of observations. The

advantage is that these methods can compensate for parameters of the input data and

the machine type without any supplementary information about the internal code or

the machine.

A recent work [56] is going further with the analysis, by studying the variations of

execution times on multicore architectures. The experimental work is conducted on

samples from two benchmarks; SPEC CPU, large sequential applications, and SPEC

OMP2001 benchmarks, OpenMP applications. Each program is executed 30 times on

a 8 cores Linux machine with the same training input data each time. The normality

check (using the standard Shapiro-Wilk test) for both benchmarks proved that the

distribution of execution times is not a Gaussian function in almost all cases. Also,

contrary to sequential SPEC CPU applications, OpenMP applications have a more

important variability of execution times. By executing 30 times, several applications

from the SPEC OMP benchmark on different software configurations (sequential

and multithreads), the study shows that if the sequential and single threaded versions

do not have important variations, when using a larger thread level parallelism (more

than 1 thread), the overall execution times decrease with a deeper disparity. More,

the mean confidence intervals (obtained with Student’s test) are not always tight.

4.3.3 Execution Times: A Qualitative Analysis

and Basic Examples

Even if it is reasonable to assume, in embedded computing, that the execution times

have probability distributions of bounded support (no infinite loops), we have to cope

with the fact that these distributions are intrinsically multimodal.

Let us give some simple examples. For example, for the computing kernel in

Table 4.1, there are two modes for the executions times, possible with different

variances, corresponding to the two sequences of instructions (see Fig. 4.4).

Instead, for the code in Table 4.2 with n taking values between 1 and N , S1 and S2

being two linear sequences of instructions, the distribution has 2N modes (the figure

Fig. 4.5 showing a possible envelope of the distribution for the case when N = 4).

Running a more complicated application like X264 encoder clearly shows that

the distribution of execution times is difficult to model and that it is multimodal.

Table 4.1 Example 1—A

simple code snippet
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Fig. 4.4 Example 1—2 mode distribution for the execution times

Table 4.2 Example

2—Another code snippet

Fig. 4.5 Example 2—Multimodal distribution for the execution times

Figure 4.6 shows the envelope of executions times for each frame when the X264 is

executed on a Linux machine, taking as input a video benchmark of size 1280×720,

with 24 frames per second.

Hence, it is difficult to model these probabilities laws through usual distributions

such as the normal or uniform ones, which are unimodal.

Furthermore, in the case of a process network, we cannot overlook the problem of

dependency between these random variables. An easy example consists in the target

tracking pipeline for which the execution times of each of the pipeline elementary
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Fig. 4.6 Example 3—Envelope of execution times for frame treatment in a X264 encoder

tasks depend, to a certain degree, on the number of effectively treated targets. In

Table 4.3, another example is presented consisting of two elementary tasks both

depending on same input data d, difficult to characterized, and each task having two

modes for its execution times. As such, as illustrated in Fig. 4.7, the execution time

of task T 1 is dependent to a certain degree of execution time of task T 2.

To conclude, it is appropriate to assume that the execution times are random

variables characterized by complicated multimodal joint distributions, presumably

better defined as unions of orthotopes rather than a Gaussian or even a mixture of

Gaussians.

However, modeling the underlying distribution of execution times seems delicate

and thus, for solving the optimization problems related to compilation for high paral-

lel systems, we do not encourage the use of parametric methods. The main raison is

that these parametric optimization methods are making assumptions on the existence

of a probability model for the uncertain parameters.

Let us now introduce some general principles about optimizing under uncertainty.

Table 4.3 Exemple 4—Code

snippet showing possible

tasks dependency
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Fig. 4.7 Example 4—Execution times for T1 and T2

4.4 Optimization Under Uncertainty

Beginning with the seminal works of Dantzig [25], Charnes and Cooper [23], Miller

and Wagner [57], Bellman and Zadeh [4], optimization under uncertainty remains

one of the most active domains of research and thanks to recent studies allowing

major advances, there is an increased regain of interest for this discipline.

4.4.1 Generalities

An example illustrating the importance of taking into account uncertainty for opti-

mization problems is the recent case study of Ben-Tal and Nemirovski [8] on a

collection of 90 problems from NETLIB library [70]. They showed that systems

optimized in the classical deterministic sense can be very sensitive to small changes

on the parameters values and that only 1 % perturbation of the data can severely

affect the feasibility properties of the found solutions.

Therefore, for real-world optimization problems in which data are uncertain and

inexact (as, for example, those related to compilation field), in order to find opti-

mal solutions which are feasible in a meaningful sense, one has to deal with the

randomness of the variables.

A crucial aspect being the way uncertainty is formalized, we can thus distinguish

two major branches of optimization under uncertainty: stochastic programming and

robust optimization.
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In stochastic combinatorial optimization problems (SCOP), it is assumed that

uncertain information can be described by random variables which can be character-

ized by probability distributions. Static SCOPs are a priori optimization problems

where the decisions are taken and optimal solutions are found in the presence of

randomness, at one single step, before the actual realization of the random variables.

Dynamic SCOPs consider that decision cannot be made until random variables are

revealed and associated random events have happened. As such, decisions are taken

after random events occur in a single stage, in the case of simple recourse problems

or in several stages, for multistage recourse problems. For both static and dynamic

models, there are decisions and there are observations of the random variables, the

order of succession being given by different schemes: for static models, first decision,

then observation while for dynamic problems, at least one decision is preceded by

at least one observation.

Robust optimization does not need to assume any exact knowledge about the

probability distribution of random data; instead, uncertain information is set based.

As such, uncertain parameters are characterized through a set of possible events and,

usually, the decision-making process searches for solutions that are feasible for any

realization of the uncertainty in the given set. Indeed, the main criticism of classical

robust approaches (e.g., the so-called “max-min” or worst-case approach, the regret

maxmin, etc.) is their over-conservatism since they are searching for solutions that

are feasible for all possible events from the uncertainty set. As such, the obtained

solutions are often too conservative, of large cost, being guaranteed even for events

with a low probability to occur. Recent approaches (e.g., [7, 13]), more flexible, try

to rectify this drawback, by making particular assumptions about the uncertainty

set of the parameters and proposing deterministic counterparts to the original robust

problem.

Even if the robust methods construct solutions which are immune to data uncer-

tainty, in general, the quality of the solution is not assessed with probabilistic consid-

erations. However, from our perspective, the probability to respect a given reliability

target is a more intuitive notion, often easier to set for a decision maker. Additionally,

we consider that the problem formulations accompanied by probability guarantees

are more appropriate when applying optimizations for the domain we target, the

compilation for manycore.

As such, in the following, we are concentrating on the resolution methods for

static stochastic programs and (without loss of generality) with uncertainty affecting

the constraints, aka chance-constrained programs.

4.4.2 Chance-Constrained Programming

The general form of the chance-constrained problem is the following:
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min
x

g (x) (CCP)

s.t. P (G(x, ξ) ≤ 0) ≥ 1 − ε

where x ∈ R
n is the decision variable vector, ξ ∈ Ω −→ R

D represents a random

vector and g : R
n −→ R is the objective function. We suppose that there exists a

probability space (Ω,Σ, P), with Ω , the sample space, Σ , the set of events, i.e.,

subsets of Ω , and P, the probability distribution on Σ . G : R
n × R

D −→ R
m is the

function for the m constraints, 0 ≤ ε ≤ 1 is a scalar defining a prescribed probability

level and P(e) of an event e is the probability measure on the set Σ .

This type of problem, where all constraints should be satisfied simultaneously

with a probability level of at least 1 − ε, is known in the literature as a joint chance

constrained program. Another variant of optimization problems with uncertainty

affecting the constraints is the separate chance constrained program in which differ-

ent probability levels εi can be assigned to different constraints. In separate chance

constraints the reliability is required for each individual feasible region while in

joint chance constraints the reliability is assured on the whole feasible space. Even if

appealing for their more simple structure, the separate chance-constrained programs

have the important drawback of not properly characterizing safety requirements

[62]. As such, while separate chance constraints could be used in the case when

some constraints are more critical than others, joint chance constraints seems a more

appropriate choice for guaranteeing an overall reliability target for the system.

As one may expect, chance-constrained optimization problems are inherently

difficult to address and although this class of problems have been studied for the last

50 years, there is still a lot of work to be made towards practical resolution methods.

There is not a general method of resolution for chance-constrained programs, the

choice of the algorithm depending on the way random and decision variables interact.

Basically, the major difficulties associated to joint CCP are related to the con-

vexity of chance constraints and the evaluation of the probabilistic constraints. For

optimization problems, the convexity is a structural property allowing to use reso-

lution techniques from convex optimization field and thus, finding a global optimal

solution. Or, the distribution function of random variables is not in general com-

pletely concave or convex. Worse, even if each constraint is convex, the union of all

of them may not be convex. As for the evaluation, for a given x , of the probability

that G(x, ξ) ≤ 0, one has to know the probability distribution of the random vector

ξ . So, a first problem raises, the one of the modeling random data in practical appli-

cations when the involved distributions are not always known exactly and have to

be estimated from historical data. The second problem is numerical since typically

ξ is multidimensional and there are no ways to compute exactly and efficiently the

corresponding probabilities with high accuracy. (At best, if given, the multivariate

distribution of ξ , can be approximated by Monte-Carlo simulations or bounding

arguments.)

As such, even for simple cases (e.g., Gaussian distributions for random variables),

chance-constrained programs can be very difficult to solve. Table 4.4 shows some of

the main theoretical and algorithmic resolution methods proposed for solving joint
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Table 4.4 Methods for solving chance-constrained programs

Category Characteristics Some references

Convexity studies Theoretical approaches [23, 57]

Particular assumptions on the

distribution

[40, 62]

Robust optimization Relatively simple to apply [5–7, 13, 18–20, 24, 34, 46,

72]

Approximations and sampling Compute bounds and

approximate solutions

[58, 60, 64]

Usually computationally

demanding

[9, 26, 27, 41, 50, 54, 61]

(Meta) Heuristics Use of precedent techniques

for computing distribution

[1, 11, 12, 52, 69]

CCP. Along with the general hypotheses made for each category (e.g., random data

in the right-hand side, normal distribution, etc.) (see column “Characteristics”) a list

of references is provided (in column “Some references”).

Concerning the first category, to the best of our knowledge, existing studies deter-

mined convexity conditions only for linear probabilistic constraints with normal

distributions in left-hand side or log-concave distributions on the right-hand side.

As for the robust approaches proposing probabilistic guarantees, they also need to

make particular assumptions, usually quite mild, and they are applicable for specific

classes of problems (e.g., linear programs) for an exact resolution.

Other directions of research consist either in discretization and sampling the dis-

tribution or in developing convex approximations. Usually, the proposed approxi-

mations find feasible but suboptimal and too conservative solutions to the original

problem without any guarantees on their quality. The approximation methods based

on sampling are replacing the actual distribution by an empirical distribution esti-

mated by simulation when a direct evaluation of the feasibility of chance constraints

is not possible and the probability has no available closed form. However, the use of

Monte-Carlo simulations is too computationally demanding when ε is small and the

assumptions made are restricting their applicability to particular cases (e.g., in order

to generate Monte-Carlo samples, these methods require the full joint distribution).

Finally, there are a few approaches that propose heuristics, type genetic algorithms,

or tabu search, combined with simulation techniques, in order to propose approximate

solutions to chance-constrained programs.

We will not go further on in details concerning each class of methods and we refer

the interested reader to the articles mentioned in Table 4.4. Instead, in the next section,

we will concentrate on a selection of resolution approaches for chance-constrained

programs, the most appropriate (from our perspective) for the field of compilation

for high parallel embedded systems.
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4.5 Some Suitable Methods of Optimization Under

Uncertainty for Compilation of High Parallel

Embedded Systems

One of the key aspects when choosing an optimization algorithm consists in analyzing

the specificities of the parameters of the problem and of the involved area. Or, most

of the previously mentioned approaches for optimizing under uncertainty are making

assumptions (e.g., existing analytical form of the distribution, independence of the

random vector components) which are either restrictive, or difficult to verify, or not

always adequate to represent the uncertainty of real-life applications. Also, most

of the approaches for optimization under uncertainty, based on probability models,

make assumptions on the underlying distribution or use simulations without making

a true connection with the data (i.e., without a through model validation with the

available experimental data samples).

However, as illustrated before, the main sources of uncertainty for the compilation

of dataflow application on manycore, the execution times, are random variables

difficult to fully describe analytically and for which it is difficult to assume a “nice”

probability model.

Another aspect to take into account when conceiving optimization methods for

dimensioning embedded applications is their response-time requirements.

For safety-critical applications (hard real-time systems), like nuclear power plant

control or flight management systems, all the timing constraints have to be met which

often goes along with a worst-case approach. Even if they lead to an oversizing of

the systems, worst-case approaches [65] are favored since missing any deadline is

highly risky and unacceptable.

The methodologies we present in the next section are more suitable for the dimen-

sioning of soft real-time systems, such as multimedia applications (video encoding,

virtual reality, etc.) for which missing a deadline from time to time is acceptable,

resulting only in a decrease of the quality of service. In fact, almost all of the

probability-based studies related to real-time systems are intended for this kind of

systems. Thus, even if the dimensioning is no longer guaranteed in all cases, accept-

able deviations are admitted, and, in consequence, it is possible to avoid oversizing

(expensive in terms of hardware) or undersizing (expensive in terms of reliability).

Moreover, for a system already dimensioned, it is possible to estimate the level of

robustness and specify deviation scenarios for which the system is no feasible or

scenarios which could be acceptable.

As such, in the following, we describe two methodologies for optimization under

uncertainty adapted for the compilation of soft real-time applications. Since the

choice of a proper probability model for the execution times seems difficult, these

methods are nonparametric with almost none or only a few assumptions on the

distributions of the uncertain data.
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4.5.1 The Robust Binomial Approach

The robust binomial approach (RBA) [68] is a simple and pragmatic method using

statistical hypothesis testing theory and directly exploiting an available sample, with

almost no assumption on the uncertain data. Since it is a specialization of the sample-

based approaches, which have the drawback to have a high computational complexity,

this generic method is intended to be used within an heuristic algorithm. Moreover,

it leads to a generic solution to leverage existing heuristic algorithms for the deter-

ministic case to their chance-constrained counterparts to solve relatively large size

optimization problems.

4.5.1.1 Basic Ideas and Motivation

In the framework of an iterative compilation, we have at our disposal representa-

tive experimental temporal data, obtained during system validation, for example,

when performing tests on the target architecture. These observations can be directly

employed in order to construct an equivalent optimization problem, more robust and

compatible with the variations of the real data, with the condition that the available

sample is sufficiently representative of the entire distribution.1

The idea is to take advantage of the existing experimental data and revisit the

scenario approach in order to provide probabilistic guarantees. The general scenario

approach [19, 20] is between the only tractable convex approximations of a chance-

constrained program, which does not impose any restrictions on the structure of the

uncertain data (in particular with respect to the random vector component indepen-

dence). Given a sample ξ (1), . . . , ξ (N S) of size N S of independent and identically

distributed observations of the random vector ξ , the scenario approach in its orig-

inal form searches a solution satisfying all the realizations and therefore it finds

suboptimal solutions, too conservative.

4.5.1.2 Statistical Hypothesis Testing

Before presenting the statistical results on which the robust binomial approach is

based, let us introduce the following notation:

1An assumption that can be in practice checked, to some extent, using static program analysis

techniques. An assumption which also relies reasonably on the expertise of test engineers in terms

of designing validation cases representative of real-world system operations.
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x decision vector

ξ uncertainty vector

p0 P(G(x, ξ) ≤ 0)

ξ (1), . . . , ξ (N S)i.i.d. random variables corresponding to N S observations of ξ

ξ̃ (i) realization of observation ξ (i)

χi Bernoulli variable equal to 1 if G
(

x, ξ (i)
)

≤ 0 and 0 otherwise.

The random variable χ =
∑N S

i=1 χi follows, by definition, a Binomial distribution

with parameters N S and p0 (χ ∼ B(N S, p0)). Let us now consider a realization

χ̃ of χ . If χ̃ (corresponding to the number of times the inequality G(x, ξ) ≤ 0

is satisfied on a sample of size N S) is sufficiently large (for instance, larger than

k(N S, 1 − ε, α)) we say that the constraint P(G(x, ξ) ≤ 0) ≥ 1 − ε is statistically

satisfied.

The value of the threshold k(N S, 1 − ε, α) (to which, for simplicity sake, we

will refer, from now on, as k) will be chosen so that the probability we accept the

constraint by error is smaller than a fixed α, in which case p0 is strictly smaller than

1 − ε:

P(χ ≥ k) ≤ α (1)

For any fixed p0 < 1 − ε, P(χ ≥ k) is smaller than P(χ ′ ≥ k) when χ ′ ∼

B(N S, 1 − ε). So we can choose k such that P(χ ′ ≥ k) ≤ α.

Given x and ε, the parameter α can be interpreted as the type I error of the statistical

hypothesis test with the following composite hypothesis:

{

H0 : P (G(x, ξ) ≤ 0) < 1 − ε

H1 : P (G(x, ξ) ≤ 0) ≥ 1 − ε

H0 corresponds to the null hypothesis made by caution, which is (intuitively) the

hypothesis we wish to reject only if we have statistically significant reasons to do so.

Hence, we can conclude, with a high confidence level of at least 1 − α, that

p0 ≥ 1 − ε.

4.5.1.3 Sensitivity Analysis of the Parameters in RBA

Table 4.5 shows some minimal values for k in function of the sample size N S, of

ε = 0.10 and of α = 0.05. For example, for establishing that an inequality holds with

a preset probability level of 1−ε = 0.90 and with a confidence level of 1−α = 0.95,

for a sample of size 50, the threshold k needed is at 48 and P(χ ≥ 48) ≈ 0.034. It

should also be noted that, for a practical use, the parameters ε and α should be of the

same order of magnitude.

We can also establish in advance the minimal size of the sample required for a

fixed level of the probability 1 − ε (with ε ∈ ]0, 1[) and a prespecified confidence

level 1 − α (with α ∈ ]0, 1[).
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Table 4.5 Examples values

for k(N S, 0.90, 0.05) in

function of N S

N S k(N S, 0.90, 0.05)

30 29

40 38

50 48

100 94

1000 915

10,000 9528

In particular, if p0 = 1 − ε and P(χ = N S) > α then we can affirm that the

sampling size is insufficient (which is true for N S = 10 and N S = 20). This formula

provides an easy way to determine the minimal number of realizations that need to be

drawn in order to statistically significantly (α) achieve the desired probability level

(1 − ε).

A further analysis consists in studying the effect of variations of 1−α and of ε on

the threshold k. For an acceptable risk error α (less than 10 %) and a fixed probability

level 1 − ε, the variation of k in function of α does not look so important (in average

a difference of 7 additional realizations for respecting the constrains and accept a

smaller risk of 0.01 instead of 0.1 for a sample size of 1000). Instead, the value of the

initial reliability level 1 − ε has a greater impact on the threshold k for same sample

size. As expected, for an important probability guarantee, the number of realizations

satisfying the constraints has to be higher. For example, for a sample of size 1000 and

different levels of 1 − α, we remark an augmentation in the number of realizations

to hold the constraints (i.e., the value of k) of 85, in average, for ε = 0.01 than for

ε = 0.1.

4.5.1.4 Chance Constraints and Sampling

The statistical theory explained above can be applied for obtaining a statistically

significant approximation model to the initial program (CCP). In order to obtain a

relevant equivalent program to (CCP) model, the following assumptions about the

random vector ξ represented by a sample of size N S are made:

Assumption 1 N S, the size of the sample for the uncertain vector ξ , is finite and

sufficiently representative.

Assumption 2 The sample for ξ is composed of independent and identically dis-

tributed (i.i.d.) observations: ξ (1), . . . , ξ (N S).

The first assumption is not very restrictive, since even if the number of initial obser-

vations is not sufficient, we can resort to statistical methods for resampling, such as

bootstrapping [31]. However, it is important that the initial sample is representative of

the distribution. The second assumption, of independence, is on the different obser-

vations of the random vector and not on its components which (as already stated) can
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be dependent. Additionally, the assumptions above remain quite general. As many

previous studies do not mention, these assumptions are also necessary in the case of

methods using a probability model, as the model itself must be validated e.g., on a

Kolmogorov–Smirnov hypothesis test using an i.i.d. sample of experimental data.

Let us now define the binary variable χ̃i for realization ξ̃ i :

χ̃i =

{

1 if G
(

x, ξ̃ (i)
)

≤ 0,

0 otherwise.

Since the sum
∑N S

i=1 χi follows a Binomial distribution of parameters N S and p0

(again, by construction), it is possible to determine k(N S, 1 − ε, α). Therefore, χ̃i ,

the realization of the variables χi , can be used to replace the probability constraint

P(G(x, ξ) ≤ 0) ≥ 1 − ε

and to obtain the (RBP) formulation, equivalent to (CCP):

min
x

g (x) (RBP)

s.t.

N S
∑

i=1

χ̃i ≥ k(N S, 1 − ε, α) (2)

G(x, ξ̃ (i)) ≤ (1 − χ̃i )L; i = 1, . . . , N S

χ̃i ∈ {0, 1}; i = 1, . . . , N S

The first constraint assures that the number of constraints which are satisfied for

the given sample are superior to the threshold k, fixed in advance in function of N S,

ε and α. Constraints of type 2 verify the respect of the initial constraint for each

realization i , making the link between x , ξ̃ (i) and χ̃i , with L a constant of large

size, depending on the problem structure but generally easy to find. For example, for

a knapsack constraint
∑m

i=1 wi xi ≤ C with wi ≥ 0 the weights of the items to be

placed, supposed uncertain, xi binary variables and C the maximal capacity allowed,

L is equal to
∑m

i=1 wi .

Minimizing the objective function g(x) for (RBP) model is equivalent to solving

the initial program (CCP) with a confidence level of at least 1 − α. Additionally, we

emphasize once more that the validity of this approximation is independent of any

particular assumption on the joint distribution of the random vector ξ , in particular

with respect to inter-component dependencies.

Although it is well illustrated on the mathematical formulation (RBP), it should

be stressed out that RBA approach is not really appropriate in a mathematical pro-

gramming setting, since, for example, the reformulation of an original linear problem

contains many binary variables and it is more complex to deal with. However, the

method can be easily and efficiently adapted to heuristic approaches.
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4.5.1.5 Adapting (meha) Heuristics with RBA

When disposing of a sample verifying assumptions 1 and 2, by making use of RBA

method, any constructive algorithm relying on an oracle for testing solution admis-

sibility can be turned into an algorithm for the stochastic case. This can be done by

modifying the said oracle so as to count the number of constraint violations for the

given realizations and take an admissibility decision based on the threshold k.

Table 4.6 shows, as an example, the general structure of a greedy algorithm for

the deterministic case as well as its adaptation for the stochastic case. The input is

problem specific and consists, for the deterministic case, in giving the structure of the

objective g, the constraint function G, the parameter vector ξ as well as the domain

of definition for the decision variables. For the chance-constrained version, in which

we consider ξ as random, we also specify a sample of size N S for ξ , the probability

level ε, and, in order to apply the robust binomial approach, the confidence level α.

In both cases, R represents the set of decisions not yet made (or residual), D the

set of admissible decisions, g(S) the solution value for solution S, d∗ the current

optimal decision, and S∗ the optimal overall solution, build in a greedy fashion.

While there are residual decisions to be made, an oracle is evaluating them for

deciding the admissible decisions. Between the admissible decisions, only the one

with the greatest improvement on the optimal solution value is kept and the overall

solution S∗ is updated. If no admissible decision is found by the oracle, the algorithm

stops. As seen, the only major difference when considering chance constraints is in

establishing the set of admissible solutions, using a stochastic oracle Os instead of

the original one O (line 4). The deterministic oracle is establishing the admissibility

of a residual decision by verifying the respect of the constraints, while the stochastic

oracle is applying the robust binomial approach and it verifies if a residual decision

is stochastically significant with a confidence level of 1 − α. For the given sample,

it compares the number of constraints respected by the sample with the threshold k,

established in advance in function of N S, ε and α (see the procedures for O and Os

in Table 4.7).

Of course, any optimization algorithm relying on an oracle to determine whether

or not a solution is admissible (e.g., a neighboring method) can be turned into an

algorithm solving the stochastic case using the same method.

4.5.2 Bertsimas and Sim-Like Robust Models

Robust optimization (RO) has gained increasing attention in the last years as another

more simple framework for immunizing against parametric uncertainties in an opti-

mization problem. With very few assumptions on the underlying uncertainty, robust

methods are designed to solve special classes of programs (e.g., linear models,

quadratic programs, etc.) in a mathematical programming setting. Moreover, recent

models such as the ones of Ben-Tal and Nemirovski [7] and Bertsimas and Sim [13]

are also providing probability guarantees.

renaud.sirdey@cea.fr



118 O. Stan and R. Sirdey

Table 4.6 General schema for a constructive algorithm

Table 4.7 Deterministic oracle versus stochastic oracle

4.5.2.1 Basic Ideas and Motivation

There are two important properties of robust optimization methods that make them

appealing in practice [24]. First at all, robust linear models are polynomial in size

and can be formalized as linear programs or second-order cone programs. In this

way, one can use state-of-the art powerful and efficient LP and SOCP solvers (e.g.,

CPLEX 9.1) in order to solve small and medium-sized linear problems. Second, the

robust methods are not making assumptions on the underlying probability distri-
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butions for the stochastic parameters, which, as seen before, there are not always

available. Instead, they are applicable for cases in which only some modest distribu-

tion information is available (e.g., known mean and support). We can however remark

that there are situations in which, even if the probability distribution is available, it is

easier to solve the RO-based models than the exact probabilistic formulation (robust

solutions obtained with several orders of magnitude faster than the exact solution).

The robust approaches are based on uncertainty sets and, in function of the assump-

tions made on the properties of these sets, there are different formulations, more or

less tractable. With the right class of the uncertainty set, RO tractable models have

been found for many well-known classes of optimization problems such as linear,

quadratic, semidefinite, or even some cases of discrete problems.

The first robust models constructed feasible solutions for any realization of the

uncertainty in the given set, and thus, they were too conservative. Meanwhile, the

recent robust approaches permitting to choose a level of probabilistic guarantee

allow more flexibility for choosing a trade-off between robustness of their solutions

and performance. In contrast to the sensitivity analysis, a post-optimization tool,

the probabilistic protection levels for the robust solutions are calculated a priori, in

function of the structure and of the size of the uncertainty set.

4.5.2.2 Some Popular Robust Models

As expected, in general, the robust counterpart to an arbitrary optimization problem

is of increased computational complexity. However, there are special classes of initial

problems and types of uncertainty sets for which the robust version can be handled

efficiently. In the following, we will present robust models for linear optimization

problems and some general results about other different formulations.

Without loss of generality, the robust counterpart of a linear optimization program

(LP) can be written as:

min
x

cT x (RLP)

s.t. Ax ≤ b, ∀A ∈ U

with A constraint data matrix m × n and U the uncertainty set.

Uncertain constraints in LP program were first discussed by Soyster [65] which

considered the case when uncertainty is “column-wise,” i.e., the columns of the

matrix A are data known to belong to convex sets A j ∈ K j and the constraints are

of the form:
∑n

j=1 A j x j ≤ b, x ≥ 0, ∀(A j ∈ K j , j = 1, . . . , n). Soyster showed

that, under these constraints, the initial problem is equivalent to
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min
x

cT x

s.t.

n
∑

j=1

Ā j x j ≤ b

x ≥ 0

where āi j = supA j ∈K j
(Ai j ). This model is too “pessimistic” since corresponds to

the case when every entry of the constraint matrix is as large as possible and no

violations of the constraints are allowed. As such, it is a worst-case approach more

suitable to solve optimization problems in the context of hard real-time systems since

it assures the highest protection against data variations.

In fact, the general case consists in a “row-wise” uncertainty, i.e., the one in which

the rows of the constraint matrix are known to belong to convex sets: ai ∈ Ui , i =

1, . . . , m. In this case, one has to well specify the properties of uncertainty sets in

order to obtain formulations which can be efficiently solved.

Ben-Tal and Nemirovski [7] and El-Ghaoui [32] consider ellipsoidal uncertainty

sets and, thus, obtain less conservative models. The assumption made by Ben-Tal

and Nemirovski [7] is that the uncertainty set is “ellipsoidal,” i.e., an intersection

of a finite number of many “ellipsoids”—sets corresponding to convex quadratic

inequalities. This leads to an optimization problem over a quadratic constraint2 and

a resulting dual of type second-order cone program (SOCP).

As we will see further, this study is between the first one to propose, under some

restrictions, probabilistic guarantees for robust linear programs.

Also, under the same assumption of simple ellipsoidal uncertainty, one can obtain

robust counterparts in the form of semidefinite optimization problems (SDF) for

other classes of initial programs: quadratically constrained quadratic programs and

second-order cone programs.

Les us now present another interesting robust model with different assumptions

on the uncertainty set.

4.5.2.3 Bertsimas and Sim Robust Formulation

Let consider a particular row i in the constraint matrix A and Ji the set of coefficients

ai j in row i that vary. The model of data uncertainty proposed by Bertsimas and Sim

[13] suppose that each uncertain coefficient is a symmetric and bounded random

variable ãi j taking values in
[

ai j − âi j , ai j + âi j

]

.

The novelty of this approach is the introduction of parameter Γi ∈ [0, |Ji |], not

necessarily integer, allowing, for each row i , to adjust the robustness of the solutions

(against the level of conservatism). As such, a feasible solution is obtained for all

2A quadratic constraint is a constraint of type: αT
i x + αi ≥ ‖Bi x + bi ‖, ∀i = 1, . . . , M with αi

fixed reals, ai and bi fixed vectors, Bi fixed matrices and ‖.‖ standing for the usual Euclidean norm.
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cases in which up to ⌊Γi⌋ are allowed to vary in the intervals
[

ai j − âi j , ai j + âi j

]

and one coefficient ai t changes by (Γi − ⌊Γi⌋)âi t .

Under this assumption, for the initial linear program (3), one can obtain the equiv-

alent linear robust formulation (4). This program which can then be solved using

standard linear solvers (e.g., CPLEX, COIN-BC) permits to find approximate robust

solutions for problems of small and medium size.

min
x

cT x (3)

s.t. Ax ≤ b

1 ≤ x ≤ u

min
x

cT x (4)

s.t.
∑

j

ai j x j + ziΓi +
∑

j∈Ji

pi j ≤ bi ∀i

zi + pi j ≥ âi j y j ∀i, j ∈ Ji

− y j ≤ x j ≤ y j ∀ j

l j ≤ x j ≤ u j ∀ j

pi j ≥ 0 ∀i, j ∈ Ji

y j ≥ 0 ∀ j

zi ≥ 0 ∀i

Of course, when Γi = 0, the constraints are the same as for the nominal problem

(no uncertainty taken into account) and, if Γi = |Ji | for each i , we obtain Soyster’s

model.

Another interesting feature for the Bertsimas and Sim method is that it can also be

applied, under same hypothesis as before, to some discrete optimization problems,

proposing a robust mixed integer linear equivalent to an initial mixed integer program.

4.5.2.4 Probability Guarantees

For linear optimization problems, Bertsimas and Sim [13] as well as Ben-Tal and

Nemirovski [7] obtain several probability bounds against constraint violations for

different uncertainty formulations.

As such, for constraints of type
∑

j ãi j x j ≤ bi , Ben-Tal and Nemirovski [7]

assume that the uncertain data are of the form ãi j = (1 + εξi j )ai j with ai j , the

nominal value for the coefficient, ε ≥ 0 the given uncertainty level, ξi j = 0 for

j �∈ Ji and {ξi j } random variables independent and symmetrically distributed in

[−1, 1].

They then show that, for every i , the probability that constraint:
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∑

j

ai j x j + εΩ

√

∑

j

a2
i j x2

j ≤ bi + δmax [1, |bi |]

(where δ > 0 is a given feasibility tolerance and Ω > 0 a reliability parameter) is

violated is, at most, exp(−Ω2/2).

As for Bertsimas and Sim model [13], the same parameter Γ controls the “price

of robustness”, i.e., the trade-off between the probability of constraint violation and

the feasibility of the solution. So, if more than ⌊Γi⌋ coefficients ai j , j ∈ Ji are

varying, the solution remains feasible with a high probability. Several bounds for

probability that the constraints are guaranteed are established for the case when the

variables ãi j are independent and symmetrically distributed random variables on
[

ai j − âi j , ai j + âi j

]

. Let x∗ be the optimal solution of formulation (4). Then, a first

bound B1 for the probability that each constraint i is violated is the following:

Pr





∑

j

ãi j x∗ ≥ bi



 ≤ exp

(

−
Γ 2

i

2|Ji |

)

.

Under same assumption of independence and symmetry for the random variables,

a more tight bound B2 for violation of constraints is established:

Pr





∑

j

ãi j x∗ ≥ bi



 ≤
1

2n







(1 − µ)

(

n

⌊ν⌋

)

+

n
∑

l=⌊ν⌋+1

(

n

l

)







with n = |Ji |, ν = (Γi + n)/2 and µ = ν − ⌊ν⌋.

As for the case when the uncertain data is interdependent, Bertsimas and Sim

consider a model in which only |Ki | sources affect the data in the row i and each entry

ai j , j ∈ Ji can be modeled as ãi j = ai j +
∑

k∈Ki
η̃ik gk j where ηik are independent

and symmetrically distributed random variables in [−1, 1]. Using this model, one

can also find a robust linear equivalent formulation for which the probability that

the solution remains feasible is guaranteed with high probability (i.e., bound B1 still

holds).

Also, since the assumption of distributional symmetry is too limiting in many real-

time situations, Chen et al. [24] propose a generalized framework for robust linear

optimization with asymmetric distributions. Using some other deviation measures

for random variables such as the forward and the backward deviations, they obtain

an equivalent which is a second-order cone program, for which the probability of

constraint violation is again being guaranteed to a requested level.
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Table 4.8 Example for the

values of Γi in function of

n = |Ji | and a probability of

constraint violation of less

than 1 % [13]

Ji Γi in function of

bound B1

Γi in function of

bound B2

5 5 5

10 9.6 8.2

100 30.3 24.3

200 42.9 33.9

2000 135.7 105

4.5.2.5 Sensitivity Analysis on the Model’s Parameters

Table 4.8 shows the choice of Γi as a function of n = |Ji | so that the probability that

a constraint is violated is less than 1 % and bounds B1 and, respectively, B2 are being

used. It can be easily seen that the second bound dominates bound B1 which gives

unnecessarily higher values for Γi . For example, for |Ji | = 2000, in order to have a

violation probability of less than 1 %, with B2, we need to use Γ = 105 which is only

≈17 % of the number of uncertain coefficients. When a lower number of uncertain

data is available, (e.g., |J | = 5), the model is equivalent to Soyster’s formulation

since a full protection is necessary. As such, the model of Bertsimas and Sim seems

a better choice for finding less conservative solutions for problems with constraints

containing a large number of uncertain data.

Moreover, as shown in [12], the Bertsimas’s robust model seems to be quite robust

when handling deviations in the underlying data: for a portofolio selection problem,

for perturbations at 5 % level, the solution frontier is relatively unchanged while the

solution frontier for Ben-Tal and Nemirovski approach [7] is severely affected.

4.6 Case Studies

4.6.1 The Partitioning, Placement and Routing

of Dataflow Networks

As mentioned in Sect. 4.2.3, one important step in the compilation of dataflow appli-

cations for massively parallel systems is the resource allocation, with the associated

optimization problems of partitioning, placement, and routing.

In the problem of partitioning of networks of processes, the objective is to assign

the tasks to a fixed number of processors in order to minimize communications

between processors while respecting the capacity of each processor in terms of

resources (memory footprint, core occupancy, etc.). The chance-constrained case

considered in [66] consists in taking into account the uncertainty coming from the

execution times on the resources defining the weights of the tasks (e.g., core occu-

pancy) and, thus, have probabilistic capacity constraints for the sum of resources
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affected to a node. Since a multistart constructive algorithm was already available

for solving the nominal case, the authors took advantage of the existing implementa-

tion and adapt it, using the robust binomial approach to transform the deterministic

admissibility oracle into a stochastic one. The accent is put more on the design-for-use

methodology and, for the experimental results, on the price of robustness compared

with the deterministic version for different thresholds on the involved parameters—

ξ , the probability guarantee, α, the confidence level and N , the size of samples. The

importance of taking into account the variations on the weights of the tasks is shown:

for half of the stochastic instances, the solutions of the corresponding deterministic

problems are not feasible.

Another possible application of the robust binomial approach is for the stochastic

problem of joint placement and routing [67] the purpose of it being to map dataflow

applications on a clusterized parallel architecture by making sure that the capacities

of the clusters are respected and that, for the found placement, there exists a routing

through the links of the underlying Network-On-Chip, respecting the maximal avail-

able bandwidth. If, again, the resources of the tasks depending on the uncertainty

times are uncertain, one has to be able to solve the chance-constrained problem with

probability capacity constraints for the nodes. The robust binomial approach was

applied in the framework of a GRASP (greedy randomized adaptive search proce-

dure) method and extensive computational tests were performed on 1920 synthetic

instances as well as on samples from a real application of motion detection. Different

configurations for the model parameters were tested, with ε, α ∈ {0.01, 0.1}. Under

same configuration, for more than 70 % of instances, the quality of the stochastic

solutions is within 5 % from the quality of deterministic ones. As for the computa-

tion time, as expected, it depends on the size of the initial problem: in this case, on

the number of clusters and of the size of the available sample.

4.6.2 The Dimensioning of Communications Buffers

Another crucial step in the compilation of an application ΣC is the memory dimen-

sioning for the communication buffers. Bodin et al. [16] treats thus one fundamental

problem for the compiler to solve in order to achieve performance, the minimization

of the buffer sizes under a throughput constraint. Let us explain more in detail the

formulation and point out where the uncertainty is ignored.

As said previously, a CSDF application can be seen as a directed graph G = (T, A)

with T, the set of actors (tasks) and A, the set of buffers (arcs or channels). Every actor

t ∈ T is decomposed into φ(t) ∈ N
∗ phases and each kth phase (∀k ∈ {1, . . . , φ(t)}),

denoted tk , has a duration d(tk) ∈ R. Also, each actor is executed several times: for

every phase k, the nth execution of this phase of task t ∈ T is 〈tk, n〉.

For every couple (k, n) ∈ {1, . . . , φ(t)} × N
∗, the preceding execution phase of

〈tk, n〉 is:

Pred〈tk, n〉 =

{

〈tk−1, n〉 if k > 1

〈tφ(t), n − 1〉 if k = 1
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Every arc a = (t, t ′) ∈ A has an associated buffer b(a) from actor t to actor t ′,

containing initially M0(a) ∈ N tokens of stored data. ∀k ∈ {1, . . . , φ(t)}, ina(k) ≥ 0

data are produced at the end of execution of tk and, similarly, ∀k′ ∈ {1, . . . , φ(t ′)},

outa(k′) ≥ 0 data are consumed before t ′
k′ starts its execution.

Let us also define Ia〈tk, n〉 the total number of data produced by t in buffer

b(a) at the completion of 〈tk, n〉 which can be computed recursively as: Ia〈tk, n〉 =

IaPred〈tk, n〉+ ina(k). Similarly, Oa〈t ′
k′ , n′〉 is the number of data, computed recur-

sively as OaPred〈t ′
k′ , n′〉+outa(k′), consumed by t ′ in buffer b(a) at the completion of

〈t ′
k′ , n′〉. The amount of tokens, respectively, produced and consumed in b(a) during

the entire iteration of actors t and t ′ are noted ia = Ia〈tφ(t), 1〉 and oa = Oa〈tφ(t ′), 1〉.

Let also suppose that each buffer b(a) associated with arc a = (t, t ′) is bounded.

This constraint can be modeled using a feedback arc a′ = (t ′, t) ∈ Fb(A) for

each arch a = (t, t ′) in A. As such, the initial size of the buffer is b(a) =

M0(a) + M0(a
′) and, if θ(a) = θ(a′) is the size of data stored in b(a), the size

of the buffer will be exactly M0(a)θ(a) + M0(a
′)θ(a′). The whole size of G is then

∑

a∈{A∪Fb(A)} θ(a)M0(a).

If T h∗
G is the minimal required throughout, the problem consists in finding integer

values for each M0(a
′) such that the throughput is at least T h∗

G and the whole buffer

size is minimal.

Using a periodic schedule, it is possible to model this problem as a linear integer

program less general and easier to define. Let S be a function defining a valid schedule

that, for each (t, k, n) with t ∈ T , ∀k ∈ {1, . . . , φ(t)} and n ∈ N
∗, associates a

starting time S〈tk, n〉 ∈ R for the nth execution of tk such that no data is read before

it is produced (the number of data in each buffer is positive). The throughput of a

periodic actor t is T hS
t = 1

µS
t

, where µS
t is the period of t for schedule S and then

the throughout of a schedule is equal to T hS
G = 1

µS
t qt

for any actor t ∈ T with qt the

repetition vector of G. The inverse of this throughout is the period of the periodic

schedule S, defined as Ω S
G = µS

t qt .

With this periodic schedule, S are defined precedence constraints on the phase

executions of tasks t and t ′. As such, for two executions 〈tk, n〉 and 〈t ′
k′ , n′〉 with n and

n′ in N
∗, the arc a = (t, t ′) and the couple (k, k′) ∈ {1, . . . , φ(t)} × {1, . . . , φ(t ′)}

we define the variables:

αmin
a (k, k′) = ⌈max{0, ina(k) − outa(k′)} + Oa〈t ′k′ , 1〉 − Ia〈tk, 1〉 − M0(a)⌋gcda

αmax
a (k, k′) = ⌊Oa〈t ′k′ , 1〉 − IaPred〈tk, 1〉 − M0(a) − 1⌋gcda

where gcda is the greatest common divisor between ia and oa for arc a, ⌈α⌉γ =

⌈ α
γ
⌉ × γ and ⌊α⌋γ = ⌊ α

γ
⌋ × γ .

Finally, for every arc a, let define the set of couples YA = {(k, k′) ∈ {1, . . . , φ(t)}

× {1, . . . , φ′(t)}, αmin
a (k, k′) ≤ αmax

a (k, k′)}.

Let also assume that the period Ω S
G is fixed in advance. Using the above defined

variables, the optimization problem considered can be formulated as the integer linear
system (5) [16].
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min
a∈Fb(A)

θ(a)M0(a) (5)

∀a ∈ A,∀(k, k′) ∈ Y (a), S〈t ′k′ , 1〉 − S〈tk, 1〉 ≥ d(tk) + Ω S
G ×

αmax
a (k, k′)

ia × qt

∀a ∈ Fb(A),∀k ∈ {1, . . . , φ(t)},∀k′ ∈ {1, . . . , φ(t)},

S〈t ′k′ , 1〉 − S〈tk, 1〉 ≥ d(tk) + Ω S
G ×

fa(k, k′) × gcda

ia × qt

ua(k, k′) = Oa〈t ′k′ , 1〉 − IaPred〈tk , 1〉 − M0(a) − 1

fa(k, k′) × gcda ≥ ua(k, k′) − gcda + 1

fa(k, k′) ∈ N, ua(k, k′) ∈ N

∀a ∈ Fb(A), M0(a) ∈ N

∀t ∈ T,∀k ∈ {1, . . . , φ(t)}, S〈tk, 1〉 ∈ R
+

This mixed integer program is then solved for the deterministic case using the com-

mercial solver Gurobi optimizer tool [59].

One can analyze this model and see that the uncertainties associated with the

successive durations of the different phases for tasks executions are localized in

the coefficients d(tk) of the first and second sets of constraints. Therefore, after

reformulating the program in a convenient way (i.e., a model similar to (3)) and

under the hypothesis of a bounded and symmetric support, one could easily apply

Bertsimas and Sim approach [13]. We can then control the robustness of solutions

with the parameter Γ which size depends on T , the number of actors, φ(t) the number

of phases for each task t and n, the number of executions for a task.

4.7 Conclusion

The multicore and manycore systems are between the future architectures for server

acceleration and embedded devices. In order to fully exploit the huge potential of

these architectures, one has to be able to write parallel applications correctly and

efficiently. Dataflow paradigms seems a good choice for designing embedded appli-

cations without worrying about data synchronization and about the underlying par-

allelism, left in the “hands” of the compiler.

As such, the high parallel embedded architectures need also innovative compi-

lation techniques, making use of advanced operation research methods for better

optimizations. Recent advances in optimization under uncertainty approaches make

them appealing in an operational manner for domains where data are uncertain, as it

is the case of embedded systems where execution times are subject to variations due

to the application inputs and to certain modern hardware characteristics.

Since the execution times are random variables difficult to analytically charac-

terize, the most suitable methods of optimization under uncertainty for embedded

applications are nonparametric, with few assumptions on the distribution of the para-

renaud.sirdey@cea.fr



4 Optimization Under Uncertainty … 127

meters involved in the optimization model. In this chapter, we have presented meth-

ods from two distinct classes of approaches: the robust binomial approach [68], an

extension of the sample-based approaches grounded in statistical testing theory, and

the model of Bertsimas and Sim [13], from the robust optimization field. The former,

more adapted for a setting where the random variables are dependent and where it is

hazardous to make any particular assumption on the distribution, provides approx-

imation solutions for medium and large-sized difficult optimization problems. The

latter is more adapted for small and medium optimization problems in order to find

exact solutions, when one can make minor assumptions on the support and on the

variance of the uncertain parameters. We have also illustrated two possible user cases,

appearing in the compilation of cyclo-static dataflow applications.

While this work is only an introduction to the optimization under uncertainty

techniques, we hope it is a good starting point for those interested in the design of

high performing embedded manycore systems using advanced and robust operation

research methods.
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