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Abstract. This paper surveys the symmetric primitives suitable for
the unusually strong versatility requirements of end-to-end encryption
in the context of IoT. For example, on the objects side, criteria such as
lightweightness as well as efficient software-based amenability to resist
side channels or fault attacks must be considered. At the other end of
the spectrum, on the cloud side, the same crypto primitives must be
able to efficiently reach the very high performances required to handle
large numbers of objects on higher-end processors. Cherry on the cake,
it would also be desirable for the primitives that are deployed in today’s
IoT infrastructures to interface as seamlessly and as efficiently as possi-
ble with the future encrypted-domain services which will be built on top
of emerging crypto primitives such as homomorphic encryption or multi-
party computation. Based on recent works on both the implementation
security as well as the homomorphic execution of some lightweight IV-
based stream ciphers, this paper argues that it may be possible to have
the cake, the cherry and the cream on top of it.
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1 Introduction

Today’s information systems are prone to an avalanche of cyber attacks
threatening our strategic infrastructures, industries and even public safety,
all this often by targeting the data churned by those systems. The ori-
gin of what seems to become an uncontrollable situation comes from the
fact that such systems are getting more and more complex with the mas-
sive deployment of connected devices (through the Internet of Things —



IoT), with more and more data being collected, exchanged, stored and
analysed and with the growing bargaining value of those data which re-
late to our personal lives. To mitigate the attacks against our systems,
and hence the data within those systems, several critical aspects have to
be further strengthened: the access to those data must be more securely
managed, their availability must be guaranteed along with their authen-
ticity, integrity and confidentiality. Each of the latter objectives is in itself
a daunting task when considering the complexity and heterogeneity of IoT
infrastructures being currently deployed.

In this paper we focus on one of the aforementioned aspects, that is
how to ensure end-to-end data confidentiality in a complex IoT system,
from the moment the data is collected by a low-end sensor node to the
moment it is used on a cloud server for, say, data analysis or some artificial
intelligence algorithm. Our paradigm here is to address how we move from
a cloud of encryptions to encryptions in the cloud. In other words, fast,
low power and securely implemented (against physical attacks) ciphers
deployed in the resource-limited IoT nodes have to be compatible with
(even) the more complex homomorphic schemes that can be deployed on
the server side. In this paper, we propose a way of achieving such a goal
based on recent works on both the implementation security as well as the
homomorphic execution of some lightweight IV-based stream ciphers.

This paper surveys the symmetric primitives suitable for the unusually
strong versatility requirements of end-to-end encryption in the context of
TIoT. For example, on the objects side, criteria such as lightweightness as
well as efficient software-based amenability to resist side channels or fault
attacks must be considered. At the other end of the spectrum, on the cloud
side, the same cryptographic primitives must be able to efficiently reach
the very high performances required to handle large numbers of objects
on higher-end processors. Furthermore, the primitives deployed in today’s
IoT infrastructures have to interface as seamlessly and as efficiently as
possible with the future encrypted-domain services which will be built
on top of emerging crypto primitives such as homomorphic encryption or
multiparty computation.

2 Lightweight stream-ciphers

2.1 Stream Cipher Basics

Stream ciphers are encryption schemes: they include an encryption func-
tion and a decryption function which can handle messages of an arbitrary
length. In this sense, they cannot be compared with block ciphers, which



handle fixed-length inputs only. For instance, block ciphers with some
particular modes of operation (like the CTR mode) are stream ciphers.

We here focus on the so-called synchronous additive stream ciphers,
which capture the vast majority of stream ciphers used today. The encryp-
tion function in a synchronous additive stream cipher consists in adding
bitwise to the plaintext a binary sequence of the same length, named
the keystream. The keystream is generated independently from the plain-
text and from the ciphertext. In most applications, the ciphertext cannot
be sent as a very long stream since it is impossible to guarantee the
synchronization of the decryption process. Therefore a resynchronization
mechanism is included based on an initial value (IV), typically a frame
number, which is used for initializing the keystream. Such stream ciphers
are then known as IV-based stream ciphers [8].

An IV-based keystream generator is decom-
posed into: k v

— a resynchronization function, Sync,
which takes as input the IV and the key
(possibly expanded by some precompu-
tation phase), and outputs some n-bit
initial state;

— a transition function @ which computes

the next state of the generator; IJ

internal state

— a filtering function f which computes
a keystream segment from the internal ke%rstream
state.

Several parameters affect the security of a synchronous additive stream
ciphers. Most importantly, there exist some generic attacks, like time-
memory-data-tradeoff attacks in [7,40, 11], recovering the n-bit internal
state of the generator with complexity ((2"/?), implying that the internal
state must be at least twice larger than the secret key.

2.2 Lightweight Stream Ciphers

Due to their functionalities, stream ciphers are well-adapted to noisy or
low-bandwidth communications. Indeed, they do not require any padding
and decryption does not propagate transmission errors. Also, they have
a low latency since encryption or decryption can start as soon as a single
bit of the message has been received. Block-cipher-based stream ciphers,
such as the AES with CTR mode, can be used as a first choice in many
applications. However, in some particular applications, dedicated stream



ciphers must be privileged, for instance if a high encryption/decryption
throughput or a very low latency is needed, or in resource-constrained
environments. For these reasons, the most recent international effort for
recommending stream ciphers, namely the eSTREAM project [29] initi-
ated by the European Network of Excellence ECRYPT, focused on two
profiles: stream ciphers for software applications with high throughput re-
quirements, and stream ciphers for hardware applications with restricted
resources such as limited storage, gate count, or power consumption.
This international competition received more than 30 new stream ciphers
in 2005. Among them, 7 ciphers have been included in a portfolio of re-
commended stream ciphers: HC-128, Rabbit, Salsa20/12 and Sosemanuk
for software profile, and Grain vl, MICKEY 2.0 and Trivium for hard-
ware profile!. Most notably, Trivium has been specified as an International
Standard under ISO/IEC 29192-3.

2.3 Trivium

Trivium is a synchronous stream cipher with a key and an IV of 80 bits
each. Its internal state is composed of 3 registers of sizes 93, 84 and 111
bits, corresponding to a size of 288 bits in total. We use the notation
introduced by the designers: the leftmost bit of the 93-bit register is s1,
and its rightmost one is sg3; the leftmost bit of the register of size 84 is
sg4 and the rightmost s177; the leftmost bit of register of size 111 is sy7g
and the rightmost saogg. The initialization and the generation of an N-bit
keystream are described below, and depicted on Fig. 1.

Init: Ko... K7 0...0

— 5% 5197, 93 bits: (s1,...,593)

<
Init: IVy...1V70...0 T qg Zi
7T

162 | 84 bits: (So4, ... ,S177)

L’Init: 0..0111 L‘
243 264 286 284 111 bits: (s17s, ..., S288)

Fig. 1. Trivium.

1 An 8th cipher, named F-FCSR, was included in the original eSTREAM portfolio
but has been removed from the list after some cryptanalytic work.



(81,82,...,893) — (Ko,...,K7g,0,...,0)
(894,895,...,8177) — (I%,...,IV’?Q,O,...,O)
(8178, 81795+« «y 5288) — (O, e ,0, 1, 1, 1)
for i =1 to 1152+ N do
t1 < Se6 + So3
to < Ss162 + S177
t3 < S243 + Sa2ss
if i > 1152 do
output z;_1152 < 11 +t2 + 13
end if
t1 < t1 + S91 - S92 + S171
Lo < ta + S175 - S176 + S264
13 <= 13 + S286 - S287 1+ S69

(81, 59,... ,593) < (tg, S1y... ,892)

(894, 895, -+, 8177) <— (tl, S94, ..., 8176)

(5178, 5179, - - -, S288) < (t2, 5178, - - -, 5287)
end for

No attack better than an exhaustive key search is known so far on full
Trivium. It can then be considered as secure. The family of attacks that
seems to provide the best result on round-reduced versions is the cube
attack and its variants [27, 6, 34, 73, 56]. They recover some key bits (resp.
provide a distinguisher on the keystream) if the number of initialization
rounds is reduced to 799 (resp. 885) rounds out of 1152. The highest
number of initialization rounds that can be attacked is 961: in this case,
a distinguisher exists for a class of weak keys [48].

2.4 Hardware vs software profile

Although initially included as part of the hardware profile of the eS-
TREAM portfolio, Trivium also allows efficient sofware implementations.

On high-end platforms, the so-called bitslicing parallelization tech-
nique can be used to boost the algorithm’s performances by multiplexing
either as many IV or as many keys (depending on the use-case) as there
are bits in the processor registers. Table 1 provides typical performances
of bitsliced implementation of Trivium on an Intel processor. Most no-
tably, using AVX registers and instructions, the algorithm can reach 22.4
Gbits/s (when AES using AES-NI ISA extensions runs at around 5.6
Gbits/s on these platforms) translating in 0.79 cycle per keystream byte
(when e.g. SOSEMANUK requires 4 to 9 cycles per keystream byte). On



these kinds of platforms, Trivium is therefore a solution of choice to either
achieve very high throughput (through IV-multiplexing) or serve many
users or devices (through key-multiplexing).

# slices state size throughput
8 288 bytes 1 Gbit/s
64 2304 bytes 7.5 Gbit/s
256 ~1 Mo 224 Gbit/s
Table 1. Software performances of bitsliced implementations of Trivium on one Intel
i5-5200U core 2.2 Ghz.

Trivium also admits fairly efficient compact 8-bits and 32-bits soft-
ware implementations suitable for more constrained platforms. Indeed,
since it takes 64 (bit-level) cycles for the reinjection of ¢3 to have an
effect on 1, up to 64 cycles can be performed in parallel leaving the pos-
sibility for byte-oriented, 32-bits-word-oriented and 64-bits-word-oriented
implementations requiring only 36 bytes of memory for the internal state
(slightly more for 64-bits implementations as 288 is not a mutliple of 64)
when AES-128 (say in CTR mode) would require 192 bytes (counter plus
key schedule). Note that 36 bytes is quite small but above the 160 bits
minimum for 80-bits security, as discussed in Sect. 2.1. For example, an
8-bits implementation of Trivium can reach a throughput of around 150
kbit/s on an Arduino Nano running at 16 MHz and is also cost-effectively
amenable to hardening against physical attacks as discussed in the next
section.

3 Protecting stream ciphers against physical attacks

Usually, stream-ciphers are constructed to resist black box mathematical
cryptanalysis. However, most of them do not take into account implemen-
tation related issues such as the vulnerability to physical attacks which
is of the utmost importance in the context of IoT. Then, it is common
to use one or more countermeasures in order to thwart such attacks but
it is not straightforward to devise such countermeasures because of the
diversity of the possible attack paths and because the usually deployed
countermeasures have a serious impact on performances.

3.1 Physical attacks

Physical attacks can be divided into three categories: invasive like reverse
engineering, non-invasive like side-channel analysis and semi-invasive like
fault attacks. The first one involves specific hardware-related phenomena,



very much related to the way the integrated circuits running the ciphers
are implemented. The second one is a particularly high threat to the way
cryptographic algorithms are implemented. The third one has been the
trickiest so far, as detailed below, due to the complexity of the different
fault attack routes and the expensive countermeasures.

Side-channel attacks. Side-channel attacks [51,61] exploit the depen-
dencies that exist between some physical values or “side channels” of
an integrated circuit like power consumption [50], electromagnetic radia-
tion [35, 68] or calculation time [49] and operations and data manipulated
during a given computation. Information about the internal processes of
the chip and the data it is manipulating can then be derived by analyzing
such dependencies using statistical tools like correlation [18], mutual infor-
mation [39], variance [59] or entropy [60] or using architecture-dependent
behaviours like cache accesses [9, 66, 67] or branch predictions [1,2]. Such
analyses can be quickly mounted with relatively cheap equipment, with-
out altering the physical integrity of the circuit.

Many side-channel attacks target the S-boxes used by some ciphers: it
is the case for most of block ciphers [3,57]. Since stream ciphers generally
do not use S-boxes, it is often more complex for an attacker to obtain an
attack path using side-channels, although such attacks do exist [33].

Fault attacks. Fault attacks consist in disturbing the behaviour of the
circuit in order to alter the correct execution of the cipher. The faults
are injected into the device by various means such as light pulses [72],
laser [71], clock glitches [4], spikes on the voltage supply [12] or electro-
magnetic (EM) perturbations [26]. They can have different effects on the
encryption (or decryption) process like an instruction-skip or an n-bit
set, reset or flip — commonly n = 1, 8 or 32 according to the chosen
injection means and to the targeted implementation. An instruction-skip
can for example allow to bypass the last key addition layer, common to
many ciphers, and thus to retrieve the key which is equal to the differ-
ence between the correct and the faulty ciphertexts. A bit set, reset or flip
can allow to make a safe-error analysis [47]. It consists in disturbing the
content of a conditional loop dependent on a key bit in order to retrieve
its value by comparing the obtained ciphertext with the correct one: in
case of equality, the condition is false, otherwise it is true. A bit set, re-
set or flip can also allow to perform Differential Fault Analysis (DFA).
DFA, originally described in [10,13], consists in retrieving a secret key
by comparing correct ciphertexts with faulty ones. DFA techniques have



been described and applied to most publicly known ciphers going from
symmetric-key ciphers like DES [10] or AES [69] to asymmetric ones like
RSA [13] or even more complex schemes like Pairings [55]. In the partic-
ular field of lightweight cryptography, DFA have been proposed against
ciphers like PRESENT [76], SPECK [74], PRIDE [52] or Trivium [65].

Yet, these references are not exhaustive in terms of fault effects and
in terms of their exploitation in real-life attacks.

3.2 Attacking Trivium

Electromagnetic radiations analysis. In order to propose a practical
example of what can be achieved by observing the side channels of an in-
tegrated circuit, we implemented and executed the 8-bit implementation
of Trivium given in [54] on an chip embedding an ARM Cortex-M3 micro-
controller. We used this micro-controller since it is quite representative of
the off-the-shelf devices used for IoT. We performed an electromagnetic
(EM) radiation analysis which consists in identifying the operations made
by the cipher. Such an analysis can allow for example to precisely target
a chosen operation of the implementation in order to more easily perform
a fault attack [53]. Figure 2 shows the obtained curves which allow us to
identify all the steps of the Trivium execution.

Trivium execution
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Differential fault analysis. The first DFA on Trivium was proposed
by Hojsk and Rudolf in 2008 [43]. The aim is to retrieve a chosen inner
state IS;, after the warm-up rounds (on which the attacker is able to
inject faults) from the keystream it generates. Once the attacker obtains
an inner state IS;,, she can run Trivium backwards until she obtains the
initial inner state and so the secret key. The DFA consists in executing
a first time the cipher without any disturbance. Then, each bit of the
keystream generated from IS, allows the attacker to obtain an equation
with 288 variables (the bits of IS;,). However, the obtained systems of
equations more variables than equations. It is therefore impossible for the
attacker to retrieve the inner state. The idea is then to execute several
more times the cipher with the same input parameters, i.e. the same
secret key and nonce, by corrupting a single bit of IS;,. Such a fault
model can be achieved by using a laser if well manipulated. The obtained
faulty keystreams allow the attacker to obtain several other equations
until having enough equations to retrieve the 288 variables. Another paper
proposed by Mohamed & al. in 2011 [65] improved this attack using SAT
solving with the same prerequisites and fault model. The attacker must
be able to control the nonce to proceed with the DFA, which is rarely
possible in the context of IoT.

Safe-error analysis. It is possible to perform a safe-error analysis on
Trivium by targeting each secret key bit during the first initialization
rounds. For each, the attacker must be able to perform a set (resp. a
reset) of the targeted bit and to precisely know its position. She also
must know the value of the correct execution of the cipher. Then, if the
obtained faulty ciphertext is equal to the correct one, the value of the bit
is 1 (resp. 0) and vice versa. Once again, the attacker must be able to
control the nonce, which is rarely possible in the context of IoT.

3.3 Countermeasures

Thwarting side-channel attacks. Generally, to prevent side-channel
attacks, the aim is to decrease leakage and/or increase noise. On the one
hand, in order to decrease leakage, it is possible to balance the power of
differential signals [32], to balance the processing of cryptographic com-
putations [44] or to limit the number of operations per key. On the second
hand, in order to increase noise, it is possible to use operation shuffling [58]
which consists in randomizing the order of the operations performed by
the cipher. Another possibility is to use masking [3,45] which consists



in applying logic or arithmetic masks to the data. It is generally not ex-
pensive to generate and apply a mask. It is however more complex to
remove it after the area it protects: it highly depends on the operations
performed by the targeted cipher.

Thwarting fault attacks. Fault attacks can be circumvented using
hardware or software countermeasures [46]. Regarding hardware counter-
measures, passive shields, which are metal layers over the chip, allows
to prevent optical fault injections [75]. However, it is possible to remove
passive shields using chemical means and fault injections using EM pulses
cannot be blocked by such shields neither. Active shields, which consist
of wire meshes that run signals over the chip surface and detect any
interruption on a wire, are thus a very effective mean to thwart many
fault attacks. Furthermore, the use of light sensors [30] allows to detect
anomalies in the circuit behavior. The main drawback of such hardware
countermeasures is their cost and that even though simulations may show
that they are efficient, there is no absolute guarantee that this will be the
case on the final chip where other considerations like final place and route,
manufacturing processes etc. may have a huge impact on the countermea-
sures efficiency. And, by the time the final chips are obtained, if a security
flaw is identified, it is expensive to have another iteration of the design
cycle to “patch” the design in hardware (in some cases metal fixes may be
used but this would not apply to any part of the circuit). It is hence highly
recommended to use such hardware countermeasures along with software
ones. One of the basic principle behind most software countermeasures is
to make sure that all the calculations timings are independent from the
data or key being manipulated, and to “hide” the internal calculations
of the cipher so that the attacker has no control over the data being ma-
nipulated and no means to understand what is happening. Masking has
been shown to offer protection against some fault attacks like DFA [53].
However, such an approach cannot thwart fault attacks like statistical
fault attacks [28] or safe-error analyses. Redundancy is thus a very effi-
cient means to thwart this latter kind of attacks. It consists in computing
the same operations on one or several copies of the data, providing either
a spatial or a temporal redundancy, and then in comparing the obtained
results. Hence, to perform a fault attack, an attacker must obtain the
same fault on both computations. However, each spatial (resp. temporal)
copy costs a memory (resp. time) overhead equal to that of an additional
operations [64]. Therefore, more and more research focus on trying to
perform such redundancies at lower costs.



3.4 Internal Redundancy Countermeasure

Recently, a countermeasure based on redundancy called the Internal Re-
dundancy Countermeasure (IRC) [54] was proposed to thwart fault at-
tacks. It consists in using an efficient 8-bit implementation of a given
cipher (which is usually the preferred option for lightweight ciphers) si-
multaneously applied on 4 blocks on a 32-bit architecture (which is the
most widely used architecture in ToT devices). It is possible by replacing
each 8-bit operator by means of a single stream of 32-bit instructions cor-
responding to the same operation performed independently on each byte
in a SIMD ? fashion. IRC uses reference blocks, which are constant inputs
(plaintexts and keys) for which the corresponding ciphertexts are known,
to increase the countermeasure’s efficiency (mainly to thwart instruction
skips). The manipulated words are thus composed of one data byte inter-
leaved with the corresponding byte of the reference block and two copies
depending on the used cipher. Figure 3 shows a typical example of a 32-bit
word as used in IRC.

Ref. Data Ref. Data

8-bit 8-bit 8-bit 8-bit

Fig. 3. IRC’s 32-bit word structure

More details are provided in [54] on how to efficiently protect stream-
ciphers with IRC including a practical implementation on Trivium.

4 FHE transciphering

Fully Homomorphic Encryption (FHE) is a relatively recent [36, 63] kind
of cryptographic techniques, which on top of allowing the scrambling of
data in order to protect their confidentiality, also provides the necessary
mathematical building blocks for the execution of general algorithms di-
rectly over encrypted data. As such, FHE is an emerging software-only
technology allowing to enforce the confidentiality of data when they are
manipulated by untrusted servers which avoids disclosing any secret to
those servers.

4.1 FHE overview

The ability to compute directly over encrypted data results in the ability
for a cloud computer (say Charlie) to do “something useful” with the data

2 SIMD: Single Instruction Multiple Data



of an end user (say Alice), eventually using additional data from one or
more providers (say, possibly many Bobs). In doing so, both Alice’s and
Bob’s data remain confidential with respect to Charlie who manipulates
them only in encrypted form and, thus, has neither access to these data in
clear form nor is provided with any decryption capability. Indeed, in this
setting, any by-product of Charlie’s calculations (be it intermediate or
final calculation results) remains sealed under Alice’s FHE scheme who,
as the owner of that cryptosystem secret key, is the only party able to
retrieve the intelligibility of Charlie’s outputs.

This capability allows to imagine a number of settings where users
can benefit from cloud services taking into account their privacy-critical
data, still without effectively giving them away. Among these are:

1. Undisclosed cross-valorization of data (and algorithms): where it be-
comes possible for an algorithm to interact with some data with this
interaction implying neither the disclosure of the algorithm to the
data owner, nor the disclosure of the data to the algorithm owner.

2. Intrinsic data protection on vulnerable platforms: where it becomes
possible to store sensitive data (e.g. medical [23,70] or biometric
data [15]) on e.g. connected (hence intrinsically vulnerable) comput-
ing platforms while keeping a permanent protection layer on their
confidentiality.

3. Privacy-preserving outsourcing: where it becomes possible to store
data on an untrusted server (with respect to confidentiality i.e. in the
honest-but-curious threat model) while still preserving an ability to
do more than just retrieving them.

At this stage, it is important to recall the security model underly-
ing the use of FHE. Indeed, in the most basic settings, two parties are
involved: the user (owner of some private data) and the server (owner
of an algorithm and possibly some data which it is willing to inject in
the calculation). The issue that is addressed by FHE is that of protect-
ing the confidentiality of user data with respect to threats coming from
the server. As such, in proper cryptographic terminology, we are in the
so-called honest-but-curious server setting.

It should also be emphasized that FHE schemes are necessarily prob-
abilistic, and this means that some noise components is added in the
encryption process to make sure that each possible cleartext message has
a large number of possible ciphertexts. This is a fundamental property
that is necessary for provable semantic security. Still, one of the issues
is that with FHE, ciphertexts are intrinsically significantly larger than



plaintexts and practically coping with this issue is one of the key issues
that need to be dealt with if FHE is ever to be practical (this is pre-
cisely why the present paper discusses FHE aspects, wait until Sect. 4.2
below). Primarily for this reason, all known FHE are intrinsically unsta-
ble: the noise amplitude grows with the homomorphic calculations until
decryption is no more possible. Usually, noise growth is faster with mul-
tiplications than with additions. Part of the intrinsic complexity of FHE
schemes is due to the necessity of noise amplitude management, in order
to ensure that the homomorphic calculation results can be decrypted.

There exists two blueprints for building homomorphic encryption sys-
tems: one is based on the self-reference trick of bootstrapping [36], the
other is based on somewhat fully homomorphic encryption, which is (until
a recent new hope [25]) the only practical option. So the approach is to use
cryptosystems that can be rendered homomorphic-enough to execute an
a priori given (class of) algorithms, and this dimensioning can automat-
ically be done “at compile time” [22]. Furthermore, we now have several
reasonably efficient such cryptosystems: BGV [17] (implemented in the
well-known open source library HELIB [41, 42]), Fan-Vercauteren [31],
GSW [38], and a few others. Some of them also have the nice property
of allowing some kind of bitslicing-type parallelism known as batching
[16] which, when applicable, allows to better amortize the cost of FHE
calculations.

Relatively to encrypted-domain data, the “FHE machine” can only
execute so-called static control structure programs (i.e., programs which
can always be turned into a linear sequence of instructions). Static con-
trol structure programs are formally equivalent to boolean circuits (i.e.
networks of logical gates modelled by acyclic directed graphs) and, when
it comes to efficient encrypted domain execution, the key parameter that
needs to be optimized is the multiplicative depth of the circuit which is
the largest number of AND gates on any path from an input to an ouput
of the circuit. Indeed, with FHE schemes such as BGV [17] and FV [31],
increasing the multiplicative depth results in a nonlinear increase in both
ciphertext size and mul operator cost (it is even sometimes advantageous
to perform much more AND gates albeit at lower depth). This is illus-
trated in Table 2.

4.2 Efficient communication towards FHE-enabled servers

As just emphasized, there are a number of issues with respect to transmit-
ting FHE-encrypted data mainly: FHE-encryption is a computationally



depth|kb/bits|ms/AND

0 3 -
1 10 4
2 21 8
5 83 28

7 148 66
10 282 150
15 601 376
20 | 1039 680
Table 2. Illustration of the ciphertext size and AND gate computation time in terms
of the multiplicative depth (FV scheme with ¢ = 2 and X ~ 128.)

heavy operation and FHE-encrypted data are much larger than their as-
sociated plaintexts.

However, FHE is powerful enough to allow a trick known as tran-
sciphering, by means of which it is possible to switch from some data
encrypted with some (possibly non homomorphic) cryptosystem (e.g. a
“classic” overhead-free symmetric cryptosystem) to the same data en-
crypted under FHE (hence on which we can now compute by means of
homomorphic operations), without this data to ever be in clear form.
Stated informally, using the AES as the underlying symmetric cipher, if

AES_1 ([«T]AES; k) =T

then, by homomorphically executing AES™! on a FHE-superencryption
of [x]|aEs, we get,

AES™ ! ([[z] aes]FHE, [K]FHE) = [2]FHE

where the encryption of the secret symmetric key under the FHE, [k]gye
can be known to the FHE computer and is referred to as a transciphering
token.

Still, homomorphically executing an AES decryption remains pro-
hibitively heavy and this is intrinsic as the algorithm as a multiplicative
depth of 40 [37,22]. Hence, more “homomorphically-friendly” symmetric
systems are required.

In this context, stream ciphers have emerged as better suited to FHE
execution [20, 62]. Indeed, when a block-cipher usually is a relatively low
degree function iterated a significant number of times (e.g. 10 times for
AES-128 or even more, to the notable exception of PRINCE [14] and
the more recent LOWMC [5]), a design which is intrinsically not FHE-
friendly, stream ciphers (when not based on block-ciphers) follow different
design patterns, some of them “friendlier” for efficient FHE execution.



So what is needed is a stream cipher where keystream bits are multi-
plicatively bounded. This is the case if keystream bits are independent by
chuncks (which is good for parallelism and batching). Also, when using
a stream cipher, keystream bits can be homomorphically computed inde-
pendently of the data. Hence, transciphering induces almost no latency
(it gets down to just an homomorphic XOR) as long as keystream calcu-
lations have been done in advance. It turns out that the basic pattern of
using an IV-based (FHE-friendly) stream cipher in counter mode fullfills
these requirements.

4.3 Homomorphic execution of Trivium

It turns out that, among the finalists of the recent eSTREAM stream
cipher design competition, Trivium (our running example in this paper)
was a good candidate as a respected 80-bits key lightweight stream cipher.
Still, in order to increase the overall keylength to a larger 128-bits while
retaining the FHE-friendlyness of Trivium, the Kreyvium variant has also
been proposed [20] (further note that another 128-bits variant has also
been proposed as part of the CESAR competition [24]). Table 3 provides
the characteristics of homomorphically running Trivium at depth 12 (57
bits of keystream per IV) and 13 (136 bits of keystream per IV). Also,
Table 4 provides some performance results when running Trivium over the
FV FHE scheme on a mid-end 48-core server (4 x AMD Opteron 6172
processors with 64 GB of RAM) and for various multiplicative depths e.g.
evaluating Trivium-12 at depth 12 leaves no “depth budget” for further
FHE calculations whereas evaluating it at depth 19 leaves a multiplicative
depth budget of 7 for further FHE operations.

Algorithm | A # ANDs # XORs X depth # key stream
Trivium-12{80 3237 15019 12 57 bits
Trivium-13|80 3474 16537 13 136 bits
Table 3. Number of AND and XOR gates to homomorphically evaluate Trivium.

Algo A N x-depth 1 core 48 cores speedup
Trivium-12(80 57 12 681.5 26.8 x 254
19  2097.1 67.6 x 31.0
Trivium-13(80 136 13 888.2 339 x 26.2
20 2395.0 772 x 31.0
Table 4. Example computation timings for the homomorphic execution of TRIVIUM.

As such, the algorithm has been implemented in standard C++ and
fed into an FHE compiler toolchain [22, 21, 19], which automatically turned
it into an optimized boolean circuit, extracted parallelism and generated
parallel code able to transparently obtain the speedups shown in Table 4.



Thus, if FHE is ever to be practical, dealing with the transmission
overhead was critical for the following reasons: to avoid the computa-
tional burden of FHE-encryption on client devices; to avoid the intrinsic
bandwidth inflation of transmitting FHE-encrypted data from devices;
to (almost) transparently interface client devices with a remote “crypto-
computer” as well as to use (almost) standard crypto on client devices.

Tranciphering also allows to perform FHE calculations (by a cloud
platform towards an end user, owner of the FHE secret key) involving
multiple data providers, each using their own symmetric secret keys (and
providing the platform with the appropriate transciphering tokens). If en-
crypted with the kind of FHE-friendly symmetric cryptography we have
just discussed, data encrypted today may also be later on used as part
of future FHE-based services without any need for reencryption or refor-
matting.

5 Conclusion

Using the Trivium stream cipher as a running example, it is this paper’s
intent to argue that IV-based lightweight stream ciphers initially designed
for hardware are versatile enough primitives to address the many needs
and constraints of end-to-end encryption in both existing and future IoT
system architectures. This is perhaps in slight opposition to conventional
wisdom which tends to favor (lightweight) block ciphers in such applica-
tions. Of course, using 80-bits keys may seem insufficient in an era when
the bitcoin miners pool takes 2.7 days to evaluate 280 (partial) hash func-
tions (roughly spending 13.5 M$ in electricity to do so) and attackers be-
comes (theoretically) empowered with Grover’s algorithm. Still, although
80-bits keys can still be argued to provide acceptable security for IoT ap-
plications in the foreseable future, most of the arguments developped in
this paper apply to other algorithms having larger key sizes and Trivium
itself now has larger key size siblings.
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